

10

Fluorescence Origin and Spectral Broadening mechanism in Atomically Precise Au₈ Nanoclusters

Xiaoming Wen^{1,2}*, Pyng Yu¹, Yon-Rui Toh¹, Xiaoqian Ma¹,

Shujuan Huang² and Jau Tang¹*

1: Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,

2: The Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052, Australia

Fig. S1: Transmission electron microscopy (TEM) image of $Au_8@BSA$ nanoclusters.

²⁰ Fig. S2. Fluorescence spectra of Au₈@BSA NCs with various excitation wavelengths.

²⁵ Fig. S3. Absorption and fluorescence spectra of Au₈@BSA NCs in solution.

³⁰ Fig. S4. The PLE spectra of Au₈@BSA and five-Gaussian fitting at (a) 550 and (b) 600 nm.

Fig.S5 Time-resolved fluorescence spectra and two Gaussian fittings at various time delays.

5

Fig. S6. The observed fluorescence time trace at 500 nm. The red ¹⁰ curve is fitting by a three-exponential function.

Fig. S7 The observed nanosecond fluorescence time trace of $Au_8@BSA$ NCs for different pH with excitation of (a) 380 nm and (b) 430 nm.

20