Supporting Information

Solution-Phase Synthesis of Single-Crystal Cu₃Si Nanowire Arrays on Diverse Substrates with Dual Functions as High-Performance Field Emitters and Efficient Anti-Reflective Layers

Fang-Wei Yuan^a, Chiu-Yen Wang^b, Guo-An Li^a, Shu-Hao Chang^a, Li-Wei Chu^b, Lih-Juann Chen^b,

and Hsing-Yu Tuan*^a

^a Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu

Road, Hsinchu, Taiwan 30013, ROC.

^b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu,

Taiwan 30013, Republic of China

*Corresponding author:

Hsing-Yu Tuan, Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013

Tel.: + 886-3-572-3661 Fax: + 886-3-571-5408

E-mail address: hytuan@che.nthu.edu.tw

Fig. S1. (a-b) top-view SEM images of Cu_3Si nanowires grown on a Cu substrate obtained from the reaction by decomposition of monophenysilane at 495 °C, 10.3 MPa at supercritical hexane. (c) Photograph of the Cu substrate after a reaction.

Fig. S2. TEM images of a Cu₃Si nanowire.

Fig. S3. FTIR spectrum of Cu₃Si nanowires.

Fig. S4. Field emission profile of arrayed Cu3Si nanowires extracted from Fig. 7, at the region that the electric field ranges from 1.00 to 1.20 V/ μ m and emission current density ranges from 0.00 to 0.06 mA/cm²

Fig. S5. SEM images of Cu₃Si nanowires grown on a Cu-patterned substrate.