Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013

Copyright The Royal Society of Chemistry, 2013

Supplementary data

Suppression of Thermally Activated Carrier Transport in Atomically Thin MoS₂ on Crystalline Hexagonal Boron Nitride Substrates

Mei Yin Chan,^{*a*} Katsuyoshi Komatsu,^{*a*} Song-Lin Li,^{*a*} Yong Xu,^{*a*} Darmawan Peter,^{*a*} Hiromi Kuramochi,^{*a*} Shu Nakaharai,^{*b*} Alex Aparecido-Ferreira,^{*a*} Kenji Watanabe,^{*c*} Takashi Taniguchi^{*c*} and Kazuhito Tsukagoshi^{**a*}

^a WPI Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Material Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan. E-mail: <u>TSUKAGOSHI.Kazuhito@nims.go.jp</u>

Fig. S1 (a) AFM image of a representative h-BN flake exfoliated onto a Si / SiO₂ substrate, measured under a scan size of 10 μ m². Inset shows the stepheight of the h-BN of ~ 53 nm relative to the SiO₂ background, where the h-BN surface is relatively smooth except for the inhomogeneities near the edges. (b) AFM image of the h-BN flake measured under a scan size of 500 nm². Inset shows the height profile across the scan line, with a measured RMS roughness of 0.2 nm.

```
Electronic Supplementary Material (ESI) for Nanoscale This journal is \textcircled{C} The Royal Society of Chemistry 2013
```

Copyright The Royal Society of Chemistry, 2013

Fig. S2 Room temperature I_{ds} - V_{ds} characteristics for the MoS₂ devices on (a) h-BN and (b) SiO₂ substrate. Low temperature I_{ds} - V_{ds} characteristics at T = 120 K for the MoS₂ devices on (c) h-BN and (d) SiO₂ substrate.

Copyright The Royal Society of Chemistry, 2013

TABLE S1.Summary of the Device Parameters.

Sample	No. of layers	Mobility @ 10Vg	Subthreshold slope (mVdec ⁻¹)	Channel area (L x W)
MoS ₂ /h-BN - D1	1	1.6	890	2.1 x 10.1
$MoS_2/SiO_2 - R1$	1	0.2	1400	1.1 x 2.7
MoS_2/h - $BN-D2$	2	11	760	2.5 x 0.7
$MoS_2/SiO_2 - R2$	2	0.9	1740	2.6 x 2.4