1	Electronic Supplementary Information for
2	Reduction of CO_2 to Low Carbon Alcohols on CuO
3	FCs/Fe ₂ O ₃ NTs Catalyst with Photoelectric Dual Catalytic
4	Interfaces
5 6	Peiqiang Li, ^{*, a} Huying Wang, ^a Jinfeng Xu, ^a Hua Jing, ^a Jun Zhang, ^a Haixiang Han ^b and Fusui Lu ^{*, a}
7	^a Department of Chemistry, Shandong Agricultural University, Shandong 271018, China, E-mail:
0	chem_carbon@yahoo.cn; pqli@sdau.edu.cn
9 10	Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue CH 122, Albany, NY 12222
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
$\frac{21}{22}$	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

- 37 **Figure S1.** The current transient during anodization of Fe in an 0.25 wt.% NH₄F
- 38 non-aqueous solution (Volume of water : glycol = 3:97) at 30 V.

58 Figure. S2a Electrocatalytic protons reduction of CuO FCs/Fe₂O₃ NTs in 0.1 mol

59 L^{-1} KCl solution with different pH.

60 **Figure. S2b** Electrocatalytic CO_2 reduction of CuO FCs/Fe₂O₃ NTs in 0.1 mol L⁻¹

- 61 KHCO₃ solution.
- Figure. S2c Electrocatalytic performance of CuO FCs/Fe₂O₃ NTs in different solutions with the same pH of 9.0 (0.1mol L^{-1} KCl solution with the assistance of 0.1mol L^{-1} KOH solution and 0.1mol L^{-1} KHCO₃ solution, both purged with
- 65 nitrogen).

66

76

67 (1) The effect of proton reduction

The KCl solution with pH = 7.0 and pH = 9.0 were prepared with the assistance of 0.1mol L⁻¹ HCl and 0.1mol L⁻¹ KOH solution, respectively. The difference of reduction current density (Figure S4a) was caused purely by the different proton reduction rate.

The different current density in Figure S4b must be caused by both proton
reduction and CO₂ reduction.

74 We calculated the ratio of protons reduction is 0.12%. The equation was as 75 followed:

$$ratio_{\text{proton reduction(-1.1V)}} = \frac{\text{proton reduction}}{\text{proton reduction} + \text{co}_2 \text{ reduction}} \times 100\%$$
$$= \frac{\text{current density}_{\text{KCl}_{\text{pH7}}} - \text{current density}_{\text{KCl}_{\text{pH9}}}}{\text{current density}_{\text{KHCO}_{3(\text{pH7})}} - \text{current density}_{\text{KHCO}_{3(\text{pH9})}} \times 100\%$$
$$= \frac{8.7354 - 8.7143}{26.6171 - 8.8170} \times 100\%$$
$$= 0.12\%$$

77 So we could think that the protons reduction has no impact on our experimental

78 conclusion.

79 (2) The effect of CO₂ reduction in bicarbonate solution itself

It must be no reduction of CO_2 in the as mentioned above KCl solution. So the comparison between the two solutions (Figure S4c) can explain the small CO_2 reduction in bicarbonate solution itself. The proportion of CO_2 reduction in bicarbonate solution itself can be calculated by the following equation:

ratio_{CO₂ reduction in bicarbonate itself (-1.1V)} =
$$\frac{\text{current density}_{\text{KHCO}_{3(\text{pH9})}} - \text{current density}_{\text{KHCO}_{3(\text{pH9})}} \times 100\%$$
84
$$= \frac{8.8170 - 8.7143}{26.6171 - 8.8170} \times 100\%$$

$$= 0.58\%$$
(2)

The ratio (0.58%) of CO₂ reduction in bicarbonate solution itself fully explained the following two points of view: 1) In bicarbonate solutions, even with nitrogen purge, there could be a small CO₂ reduction. 2) The small CO₂ reduction in bicarbonate solution itself has no impact on our conclusion.

89

90

91

92 93

- 94
- 95
- 96
- 97
- 98 99

100 101

Figure S3. The SEM image of the CuO film/Fe₂O₃ NTs

The Fe₂O₃ NTs prepared method is the same as CuO FCs/Fe₂O₃ NTs. And the CuO film/Fe₂O₃ NTs was prepared by potentiostatic method, the detailed prepared condition as followed: the electrolyte 0.4 M CuSO₄ + 3 M lactic acid; constant potential 0.5 V; pH = 8.0; deposition temperature 50 °C; deposition time 15 minutes.

Figure S4. Chronocoulometry curves on CuO FCs/Fe₂O₃ NTs and CuO film/Fe₂O₃ NTs

The adsorptive active site volume G calculated method was listed below: According to the Cottrell theory: $Q=nFG+Q_{d1}+2nFAC_{ox}^{0}D^{1/2}t^{1/2}/\Pi^{1/2}$, it can be seen from the formula that the total charge Q has a linear relationship with the $t^{1/2}$, but also the intercept in charge-axis is nFG+Q_{dl}, in the blank medium sulfate solution that the intercept is measured as Q_{dl}, the difference is nFG, thus the reaction volume G in the electrode surface can be obtained (n=1). The electrochemical adsoptive amount for the CO₂ on the CuO FCs/Fe₂O₃ NTs and CuO film/Fe₂O₃ NTs is 1.65 nmol and 0.62 nmol, respectively. The former is 2.66 times of the later.

Electronic Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry 2013

Table S1. Comparison between CuO FCs/Fe₂O₃ NTs and CuO film/Fe₂O₃ NTs

		CuO FCs/Fe ₂ O ₃ NTs CuO film/Fe ₂ O ₃ NTs	
	Methanol	FE 91.20%	FE 15.11%
		PS 81.80%	PS 47.06%
	Ethanol	FE 9.80%	0
	Methane	PS 8.80% FE 10.46%	0 FF 24 92%
	Wethane	PS 9.40%	PS 52.94%
	CO ₂ conversiton (%)	16.92%	3.03%
1.5.4			
156			
157			
157			
158			
100			
159			
160			
161			
162			
163			
164			
104			
165			
166			
167			
168			
169			
170			
171			
172			
173			
174			
177 175			
170			
1/0			
177			
178			
179			

Figure S5. The SAED parten of CuO FCs/Fe₂O₃NTs

181	the second se
182	
183	
184	
185	
186	
187	
188	
189	

191 Figure S6. The experimental device of photoelectrocatalytic properties