Supporting Information

1. Field emission scanning electron microscopy (FE-SEM)

A high resolution SEM image of Ag-doped ZnO NWs exhibited a diameter of about 80 nm and a length of about 1.5 um. Given in this figure, the randomly oriented distribution (not vertically oriented) of Ag-doped ZnO NWs was predominantly attributed to the relatively rough surface morphology of polyester substrates

Fig. S1 SEM image of Ag-doped ZnW NWs on polyester substrate. The inset represents the plan view of single Ag-doped ZnO NW

Fig. S2 displays the tilted SEM images of Ag-doped ZnO NWs grown with various Ag mole concentrations. Seen in fig S2, all the samples exhibited a random growth direction. Uniform synthesis was obtained in a large area, regardless of mole concentrations.

Fig. S2 SEM image of Ag-doped ZnO NWs grown at various mole concentrations

2. Photoluminescence measurement

Fig. S3 demonstrates the low temperature PL spectra of the three Ag-doped ZnO NWs with different Ag dopant source concentrations taken at 10 K. As seen in Fig S3, The intensities of FA peak on Ag-doped ZnO NWs become stronger with decreasing Ag dopant source concentration. This indicates that the Ag-doped ZnO NWs using 1mmol Ag dopant source clearly act as accetor levels which can conpensate the native donors.

Fig. S3 PL spectra of Ag-doped ZnO NWs as a function of Ag nitrate mol concentration ranging from 1-15 mmol taken at 10 K

3. Varshini fitting

Fig. S4 shows a plot of the experimental and theoretical values of AX over temperature ranging from 10-300 K. The following Varshnis empirical formula was used for the calculation

$$E(T) = E(0) - \frac{\alpha T^2}{T + \beta}$$

where α and β denote the constants and E(0) the energy of each line at T = 0 K. The fit of this model was shown as a solid line (red) through the experimental data points (black). The values of the fit parameters E(0), α and β were 3.358 eV, 0.001 eV/K and 920 K for the Ag-doped ZnO NWs. The Acceptor bound exciton energy line at 3.357 eV depicted a continuous shift to lower energy as the temperature increased. Theoretical and experimental results for the exciton emission peak displayed a similar temperature dependence trend

Fig. S4 Temperature dependence of the transition energy of the A^oX peaks of Ag-doped ZnO NWs, where the solid lines indicate the relative transition energy variation with the Varshni formula.

4. The swiching polarity of SPENG

To ensure true signal from Ag-doped ZnO NW nanogenerator, the analysis of switching polarity was performed, as shown in Fig. S5. A swap in electrical connection (forward \leftrightarrow reverse) resulted in a reversal in the measured output, demonstrating good agreements in mechanism of piezoelectricity

Fig. S5 Forward (blue line) and reverse (red line) output polarities induced by the sound wave input (black line).

5. Rectifying circuits for SPENG

The SPENG were designed to charge the capacitors (100 uF each) with only the switches numbered 1 turned on. Then, the switches numbered 2 and 3 were turned on after the switches numbered 1 turned off. Capacitors were discharged to power the PDLC.

Fig. S6 Schematic design diagram of the rectifying circuit and charge storage device for Agdoped ZnO NWs nanogenerato