Supporting Information

A new near infrared photosensitizing nanoplatform containing

blue-emitting up-conversion nanoparticles and hypocrellin A for

photodynamic therapy of cancer cell

Shan Jin^{ac,§}, Liangjun Zhou^{ac,§}, Zhanjun Gu^{a,*}, Gan Tian^{ad}, Liang Yan^a, Wenlu Ren^a, Wenyan Yin^a, Xiaodong Liu^{ae}, Xiao Zhang^{ab}, Zhongbo Hu^c, Yuliang Zhao^{ab,*}

^aKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R.China
^b Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing, 100190, China.
^cCollege of Materials Science and Opto-Electronic Technology,Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R.China
^dCollege of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
^eCollege of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao,066004, P. R. China.
^{*}Corresponding Authors: zjgu@ ihep.ac.cn, zhaoyuliang@ihep.ac.cn.
[§] These authors contributed equally.

Fig. S1 FT-IR spectra of (a) Tween 20-UCNPs and Tween 20; (b) Tween 20-UCNPs@HA and HA. In these four samples, it is clear to find that the strong and broad band around 3430/3491 cm⁻¹, corresponding to the O-H stretching vibrations, and the bands centered at 2927/2932 cm⁻¹ and 2863/2837 cm⁻¹, associated with the asymmetric (v_{as}) and symmetric (v_s) stretching vibrations of methylene (-CH₂), respectively. Stretching vibrations generated by O-C=O carboxylic group at 1565 cm⁻¹ and 1420 cm⁻¹ demonstrated the bound oleic acid while disappeared in Tween 20-UCNPs@HA due to strong signal of HA. Moreover, characteristic bands of C=O ester group and C-O-C group belong to Tween 20 are observed in (a) at 1735 cm⁻¹ and 1100 cm⁻¹, respectively, which are also found in Tween 20-UCNPs but greatly reduced (1733 cm⁻¹ and 1109 cm⁻¹). The C=O bands (1712 cm⁻¹ and 1710 cm⁻¹) also could be observed in (b) with three bands (1285 cm^{-1} , 1210 cm^{-1} and 1162 cm^{-1}) belong to stretching vibrations of C-O-C groups. Band at 1460/1470/1454/1453 cm⁻¹ in all spectra attributed to v_{as} of $-CH_3$ groups. The three bands (998 cm⁻¹, 912 cm⁻¹ and 814 cm⁻¹) observed in (b) are assigned to the deformation vibration of ring hydrogens.¹⁻⁶

Fig. S2 (a) HA Loading amount of UCNPs *versus* increased concentrations of HA. (b) Cumulative HA released from Tween 20-UCNPs@HA in PBS (pH=7.4) under continuous stirring for different time at 37 °C. All these studies were repeated for three times.

Fig. S3 Luminescent intensity changes of DPBF in acetonitrile (15 μ L, 5 mM) dealt with 4 mL dispersion of Tween 20-UCNPs@PSs (2.5 mg/mL; a: HA; b: Ce6; c: ZnPc; d: MB) after 980 nm laser irradiation (0.8 W/cm²) for 10 min. (e) Up-conversion luminescence spectrum and (f) TEM image of NaYbF₄: Er UCNPs used in b-d.

References:

- H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng and J. Shi, *Biomaterials*, 2012, 33, 5384-5393.
- 2. W. L. Ren, G. Tian, S. Jian, Z. J. Gu, L. J. Zhou, L. Yan, S. Jin, W. Y. Yin and Y. L. Zhao,

Rsc Adv., 2012, **2**, 7037-7041.

- 3. Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi and C. Huang, *J. Am. Chem. Soc.*, 2008, **130**, 3023-3029.
- 4. Y. Zhang, L. Song, J. Xie, H. Qiu, Y. Gu and J. Zhao, *Photochem. Photobiol.*, 2010, **86**, 667-672.
- L. Zhou, H. J. Jiang, S. H. Wei, X. F. Ge, J. H. Zhou and J. Shen, *Carbon*, 2012, 50, 5594-5604.
- 6. L. Zhou, W. Wang, J. Tang, J.-H. Zhou, H.-J. Jiang and J. Shen, *Chem. Eur. J.*, 2011, **17**, 12084-12091.