Electronic Supplementary Information

## Exploiting Shape Effects of La<sub>2</sub>O<sub>3</sub>Nanocatalysts for Oxidative Coupling of Methane Reaction

Ping Huang,<sup>a,b</sup> YonghuiZhao,<sup>a</sup> Jun Zhang,<sup>a</sup> Yan Zhu,<sup>a,\*</sup> and YuhanSun<sup>a,\*</sup>

<sup>a</sup>CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China <sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, China

## **Experimental:**

Synthesis of La<sub>2</sub>O<sub>3</sub> nanorods: 5 mL 25% NH<sub>3</sub>·H<sub>2</sub>O was added to 250 mL 0.1M La(NO<sub>3</sub>)<sub>3</sub> solution with vigorously stirring at about 800 rpm for more than one hour to get the formation of a white slurry. The white precipitate was obtained through centrifugation, and washed with nanopure water and ethanol for two times. Then a 250 mL sealed glass beaker loaded with the above white precipitate suspended in 125 mL nanopure water was laid in an oven with 105°C. After 24 hours, the precipitate was separated by centrifugation, washed with ethanol several times, followed by drying at 80°C in air overnight. The as-prepared powders were calcined with a muffle at 690°C for 2 h.

Synthesis of La<sub>2</sub>O<sub>3</sub> nanoparticles: 25 mL 0.66 mol/L citric acid was slowly added into 25 mL 0.2 mol/L La(NO<sub>3</sub>)<sub>3</sub> solution with vigorous stirring for 15 minutes. The mixture was placed in a constant-temperature bath at 70°C with continuously for 6 h. Then the stirring was stopped, and the solution was heated at 110°C for 24 h in a digital-type temperature-controlled oven. The oven was cool down to room temperature naturally, and the obtained yellow powders were calcined with a muffle at 750°C for 2 h.

**OCM reaction test**: The catalytic activities for oxidative coupling of methane were evaluated at atmospheric pressure in a fixed-bed quartz tubular reactor. All the catalysts used for the OCM reaction were pelletized, crushed, and sieved to 40-80 mesh. 0.2 g catalyst and 0.8 g quartz sands as a diluent were placed in the reactor. Before the reaction, the catalyst in the reactor was heated to the reaction temperature (400°C) with 40 min at O<sub>2</sub> flow. The reactant gases CH<sub>4</sub> and O<sub>2</sub> went through the reactor at a rate of 120 mL/min with *n* (CH<sub>4</sub>): *n* (O<sub>2</sub>) =3 and the gas hour space velocity (GHSV) was fixed in 36000 mL/(g·h). The OCM reaction temperature was controlled from 400°C to 800°C. The composition of the gas exiting the reactor was monitored by two gas chromatographies with thermal conductivity detector (GC-TCD). One gas chromatography with carrier gas of H<sub>2</sub> was used to analyze O<sub>2</sub>, CO, CH<sub>4</sub>, CO<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub>, and the other gas chromatography with carrier gas of Ar was used to analyze H<sub>2</sub>, O<sub>2</sub>, CO, CH<sub>4</sub>, and CO<sub>2</sub>. A cold trap was placed at the outlet of the reactor to separate water from the reaction products. Generally, the carbon mass balance can be achieved up to 98%.

**Characterization:** Powder XRD measurements were performed with a Rigaku D/Max-RB X-ray diffractometer with Cu K $\alpha$  radiation.TEM images were recorded with JEOL JEM-2100 Electron Microscope (JEOL). The Brunauer–Emmett–Teller (BET) surface areas were determined by nitrogen adsorption-desorption isotherm measurements at 77 K (ASAP 2010). The catalytic products were analyzed by a gas chromatograph (Agilent Technologies: 6890N). Programmed Desorption (TPD) was performed with a flow of 40 mL/min O<sub>2</sub>-He and a heating rate of 10 K/min to 800°C. XPS experiments were carried out on a RBD upgraded PHI-5000C ESCA system (Perkin Elmer) with Mg K $\alpha$  radiation (h $\nu$ =1253.6 eV) or Al K $\alpha$  radiation (h $\nu$ =1486.6 eV).

## **Supporting Figures**



**Figure S1.** (a) TEM image of  $La_2O_3$  nanoparticles. (b) HRTEM image of a nanoparticle. Note that the 0.27 nm apart of the lattice fringes is corresponding to the (200) planes of  $La(OH)_3$ , which may be result from the water adsorption of  $La_2O_3$  in air.



Figure S2. CH<sub>4</sub> conversion over quartz sand without La<sub>2</sub>O<sub>3</sub> catalyst.



Figure S3. Catalytic results of OCM over La<sub>2</sub>O<sub>3</sub> bulk.



**Figure S4.** Variation of coupling selectivity as a function of reaction temperature on (a) La<sub>2</sub>O<sub>3</sub>nanorods, (b) La<sub>2</sub>O<sub>3</sub> nanoparticles and (c) La<sub>2</sub>O<sub>3</sub> bulk, respectively.



**Figure S5.** The side and the top views of the slab model of  $La_2O_3$  (110) (a) and (101) (b). The 3-fold coordinated and 4-fold coordinated oxygen atoms in the top layer are labeled  $O_3$ ,  $O_4$  and colored magenta and chocolate, respectively; the one in the bulk are red, La atoms in the top layer are blue; the one in the bulk are cyan (One has five oxygen coordinations (La<sub>5</sub>), and another has four  $O_4$  oxygen coordinations (La<sub>4</sub>).