Electronic Supplementary Information (ESI)

Fig. S1. SEM images of (a,b) ppy, (c,d) ppy@SiO₂, (e,f) SiO₂, and (g,h) SMNW.

Fig. S2 N₂ adsorption/desorption isotherm and BJH pore-size distribution of SMNW.

Fig. S3 Long-term cycling performance of SMNW at 500 mA g⁻¹, performed after rate test in Fig. 5b.

Table ST Comparison of our product with ST-based anode materials in other interature					
S1-based anode	Potential	Current density	cycles	Capacity	Keterence
materials	cutoff(V)	$(mA g^{-1})$		$(mAh g^{-1})$	
Our product	1-0.01	500	50	1826	
Our product	1-0.01	500	100	1698	
Our product	1-0.01	500	300	1283	
Our product	1-0.01	2500	50	1234	
Our product	1-0.01	2500	300	858	
Si nanowires	1.5-0	300 (0.1 C)	50	1500	[1]
Si nanowires	3-0.01	179 (C/20)	20	800	[2]
Si nanowires	2-0.01	1/30C	60	1100	[3]
Si nanorods	2-0	0.15 C	100	1420	[4]
Si nanotubes	2-0.01	0.5 C	90	1050	[5]
Si-Cu nanorods	3-0.01	1000	3	750	[6]
Ni@Si nanowires	1.5-0	0.25 C	173	~1200	[7]
Nano-Si-graphene	1.2-0.01	200	30	1500	[8]
Si nanoparticles@CNT	1-0.01	1000	200	~870	[9]
Si@C nanospheres	1.5-0.01	200	20	340	[10]
Porous Si@C	2-0.01	100	50	~1500	[11]
Si@porous C microspheres	1.2-0.01	1000 (0.5 C)	50	1469	[12]
Mesoporous nano-Si	1.5-0	100	30	1600	[13]
Si/Fe film	1.2-0.02	150 uA (1 C)	300	204	[14]
C/Si/C microtubes	1.5-0.05	500	300	1000	[15]
Nano-Si@Co ₃ O ₄	2.5-0	100	100	850	[16]
Nano-Si-CNT	2-0.01	500 (0.5 C)	50	~500	[17]
Nano-Si@Ti4Ni4Si7	1.5-0.01	880 (1 C)	50	900	[18]
Si nanowires/TiN/Al	2-0.01	0.1 C	100	~1250	[19]
Si@C nanofibers	1.5-0.01	50	50	590	[20]
Si nanoparticles@C fibers	1.5-0.005	240 (0.2 C)	100	~1300	[21]

- 1 B. M. Bang, H. Kim, J. P. Lee, J. Cho and S. Park, *Energy Environ. Sci.*, 2011, 4, 3395.
- 2 A. M. Chockla, J. T. Harris, V. A. Akhavan, T. D. Bogart, V. C. Holmberg, C. Steinhagen, C. B. Mullins, K. J. Stevenson and B. A. Korgel, *J. Am. Chem. Soc.*, 2011, **133**, 20914.
- 3 H. T. Chen, J. Xu, P. C. Chen, X. Fang, J. Qiu, Y. Fu and C. W. Zhou, *ACS Nano*, 2011, **5**, 8383.
- 4 S. H. Nguyen, J. C. Lim and J. K. Lee, *Electrochimica Acta*, 2012, 74, 53.
- 5 Z. H. Wen, G. H. Lu, S. Mao, H. J. Kim, S. M. Cui, K. H. Yu, X. K. Huang, P. T. Hurley, O. Mao and J. H. Chen, *Electrochem. Commun.*, 2013, **29**, 67.
- 6 M. Au, Y. P. He, Y. P. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaza and T. Adams, *J. Power Sources*, 2011, **196**, 9640.

- 7 X.L. Chen, K. Gerasopoulos, J. C. Guo, A. Brown, C. S. Wang, R. Ghodssi and J. N. Culver, *Adv. Funct. Mater.*, 2011, **21**, 380.
- 8 Y. S. He, P. F. Gao, J. Chen, X. W. Yang, X. Z. Liao, J. Yang and Z. F. Ma, *RSC Advances*, 2011, 1, 958.
- 9 H. Wu, G. Y. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, *Nano Lett.*, 2012, 12, 904.
- 10 S. Iwamura, H. Nishihara and T. Kyotani, J. Phys. Chem. C, 2012, 116, 6004.
- 11 Y. Zhao, X. Z. Liu, H. Q. Li, T. Y. Zhai and H. S. Zhou, *Chem. Commun.*, 2012, **48**, 5079.
- 12 D. S. Jung, T. H. Hwang, S. B. Park and J. W. Choi, Nano Lett., 2013, 13, 2092.
- 13 Y. Hwa, W. S. Kim, B. C. Yu, S. H. Hong and H. J. Sohn, *Energy Technol.*, Doi: 10.1002/ente.201300032.
- 14 H. K. Kang, S. R. Lee, W. Il Cho and B. W. Cho, *Phys. Chem. Chem. Phys.*, 2013, 15, 1569.
- 15 J. W. Deng, H. X. Ji, C. L. Yan, J. X. Zhang, W. P. Si, S. Baunack, S. Oswald, Y. F. Mei and O. G. Schmidt, *Angew. Chem. Int. Ed.*, 2013, **52**, 2326.
- 16 Y. Hwa, W. S. Kim, B. C. Yu, S. H. Hong and H. J. Sohn, J. Phys. Chem. C, 2013, 117, 7013.
- 17 C. Martin, O. Crosnier, R. Retoux, D. Bélanger, D. M. Schleich, and T. Brousse, *Adv. Funct. Mater.*, 2011, **21**, 3524.
- 18 S. B. Son, S. C. Kim, C. S. Kang, T. A. Yersak, Y. C. Kim, C. G., Lee, S. H. Moon, J. S. Cho, J. T. Moon, K. H. Oh and S. H. Lee, *Adv. Energy Mater.*, 2012, 2, 1226.
- 19 E. L. Memarzadeh, W. P. Kalisvaart, A. Kohandehghan, B. Zahiri, C. M. B. Holt and D. Mitlin, *J. Mater. Chem.*, 2012, **22**, 6655.
- 20 B. S. Lee, S. B. Son, K. M. Park, J. H. Seo, S.H. Lee, I. S. Choi, K. H. Oh and W. R. Yu, *J. Power Sources*, 2012, **206**, 267.
- 21 T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo and J. W. Choi, *Nano Lett.*, 2012, 12, 802.