Supporting Information

Synthesis of the Double-Shell Anatase-Rutile TiO₂ Hollow Spheres with

the Enhanced Photocatalytic Activity

Shunxing Li^{**a,b*}, Jie Chen^{*a*}, Fengying Zheng^{*a,b*}, Yancai Li^{*a,b*} and Fuying Huang^{*a*}

^a Department of Chemistry & Environmental Science, Minnan Normal University, Zhangzhou, China, 363000. E-mail: shunxing_li@aliyun.com

^b Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology , Minnan Normal University, Zhangzhou, China, 363000. E-mail: lishunxing@mnnu.edu.cn

after crush treatment

Fig. S1 UV-Vis diffuse reflection spectra of the double-shell TiO_2 hollow spheres and other TiO_2 samples (P25, anatase TiO_2 nanoparticles, hollow spheres and the crushed double-shell hollow spheres), and the schematic diagram of the light reflection and scattering in these samples.

Samples	Specific surface area ^a	Average pore diameter ^a
	$(m^2 g^{-1})$	(nm)
Double-shell TiO ₂ sphere	169	3.9(inner) 8.5(outer)
Inner hollow TiO ₂	231	3.8
Outer hollow TiO ₂	133	8.5
Commercial P25	59	_
Commercial anatase TiO ₂	38	_

 Table S1. Physiochemical properties of different samples

^aSpecific surface areas and average pore sizes of the samples are calculated by using the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) method, respectively.