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1. Characterization of Silicon Nanospheres.   

The atomic structures of silicon nanospheres are characterization as done before1. The results 

show that surface roughness rms, surface thickness δ and maximum surface thickness δMax can 

be regarded as independent of nanosphere radius. The defined particle radii R corresponding to 

R0=1.0, 2.0, 3.0, 4.0 and 5.0 nm are 0.862, 1.876, 2.864, 3.839 and 4.849 nm, respectively. rms is 

about 0.63±0.02 Å, δ is about 1.65±0.08 Å, δMax is about 2.30±0.36 Å and 2∆d=2(R0-R) is about 

2.84±0.28 Å. For silicon nanospheres, there is almost no surface atoms fluctuating out of the cut-

obtained radius R0 since it always satisfies core
Max 0R Rδ+ ≤ . Therefore, for the sake of 

convenient discussion, it appears that the cut-obtained particle size R0 is more appropriate than 

the defined particle size R . Moreover, the influence of temperature on particle’s structural 

parameters was also explored using the NVT ensemble for comparison. The results (Table S2) 

indicate that the change of temperature from 1 to 600 K only leads to a slight change of particle 

size (R) and surface roughness (rms). Therefore, the influence of temperature on the structure of 

a silicon nanosphere may be ignored and the defined structural parameters are considered to be 

independent of temperature. 

Table S1. Structural parameters of silicon nanospheres at 300 K 

R0 (Å) Rcore(Å) R (Å) rms (Å) rms/R δMax (Å) δ (Å) 

10 7.75 8.62 0.65 0.075 1.78 1.52 

20 17.7 18.76 0.61 0.033 2.14 1.68 

30 27.55 28.64 0.62 0.022 2.39 1.66  

40 37.25 38.39 0.65 0.017 2.75 1.74 

50 47.45 48.49 0.61 0.013 2.45 1.65 
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Table S2. Structural parameters of silicon nanospheres of R0= 2.0 nm at different temperature T. 

T (K) 1 150 300 450 600 

Rcore (Å) 17.7 17.7 17.7 17.65 17.60 

R (Å) 18.77 18.78 18.76 18.74 18.70 

rms (Å) 0.60 0.60 0.61 0.63 0.64 

rms/R 0.032 0.032 0.033 0.034 0.034 

δ (Å)  1.67 1.68 1.68 1.72 1.74 

 δMax (Å)  2.02 2.18 2.14 2.28 2.34 

Note: R0 represents arbitrarily cut particle radius. 

2. Effect of temperature on the LJ potential and mechanical contact forces 

Figure S1-a shows that the results obtained at different temperatures ranging from 100 to 300 K 

are almost identical and the effect of temperature on the interparticle potentials can be ignored. 

Likewise, the results in Figure S1-b show that the mechanical contact forces obtained at different  

temperatures ranging from 100 to 300 K are almost identical, indicating that contact forces can 

be considered to be independent of temperature. 

 

Figure S1. (a) Interparticle LJ potentials as a function of surface separation d and (b) mechanical 

contact forces as a function of normal displacement δn between silicon nanospheres of 2.0 in 

radius at an initial relative velocity of 100 m/s under different temperatures using NVT ensemble.  
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3. Measurement of Young’s modulus of silicon bulk 

The Young’s modulus of silicon bulk was separately measured by MD simulations. MD 

simulations were performed on a simulation cell of L×M ×M nm3 (L=8.0, M=6.0), which was 

filled with silicon molecules as bulk (Figure S2-a). After geometry optimization, MD simulation 

was first conducted using a NVT ensemble (i.e., constant number of atoms, constant volume and 

constant temperature) at 300.0 K running for at least 50.0 ps after equilibration. The equilibrated 

structure in the final frame was exported and then MD simulations were carried out using NPT 

ensemble (i.e., constant number of atoms, constant pressure and constant temperature) at 298.0 K 

for at least 50.0 ps along the (100) direction, following geometry optimization. A series of 

external pressures were applied along X-axis only, i.e., the (100) direction, in order to obtain 

compressive stress-strain curve (Figure S2-b). 

Young’s modulus is derived from the initial linear part of the typical stress-strain curve (Figure 

S2-b) of silicon bulk. With increase in stress, the corresponding strain first increases linearly and 

then increases sharply. The slope of initial linear part (satisfying Hooke’s law) was used to 

derive elastic modulus of ca. 125.5 GPa along the (100) direction of crystalline silicon bulk, 

which is 3.5% lower than experimental result of 130 GPa,2 indicating an excellent agreement 

with each other. 

 

Figure S2. (a): Simulation model used to measure Young’s modulus of silicon counterpart bulk 

along the (100) direction; (b): Compressive stress-strain curve of silicon bulk.  
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4. Contact Forces at low Impact Velocity.  

The mechanical contact forces obtained at low impact velocities between silicon nanospheres of 

radii ranging from 1.0 to 5.0 nm are shown in Figure S3. The MD simulated results are in 

accordance with that predicted by the Hertz model using Young’s modulus of silicon bulk. 

 

Figure S3. Normalized 2
c 0(8 3)F R E∗ as a function of ε=δn/(2R0) obtained in the approach 

process from the MD simulation between two silicon nanospheres of radii ranging from 1.0 to 

5.0 nm at an initial relative velocity of Vr,0 = 2.0 Å/ps (i.e., 200 m/s). The zero value of δn 

corresponds to the first non-zero value of contact force. Solid line represents the Hertz prediction 

using Young’s modulus of silicon bulk. 

5. Origins of the Hardening Effect and Comparisons with Three Established Theories 

 First, the constraint-counting theory of the elastic properties of random covalent networks 

predicts that the Young’s modulus should depend on mean atomic coordination Z, given by3 

 ( )1.5
0 2.4E E Z= −  (S-1) 

where E0 =130 GPa. Z is the mean coordination. According to the data in Figure 2b, given the 

coordination radius is 3.0 Å, the number of atoms corresponding to CN=1, 2, 3, 4, 5, and 6 are 
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Z=3.6465. Using Eq. (S-1), the apparent elastic modulus is about 180.9 GPa, which is still much 

smaller than 497.6 GPa. 

Second, according to the bond-order-length-strength (BOLS) correlation mechanism,4 the change 

in elastic modulus can be given by 

 (m 3)0

0 0

1i
E EE c

E E
− +−∆

= = −   (S-2) 

where m=4.88 for silicon,4 ci is the change of bond length between before and after compression. 

Now take silicon nanospheres of 2.0 nm in radius for example, the bond length becomes shorten 

to around 2.20 Å while the original length is about 2.3516 Å, thus ci=2.2/2.3516≈0.9355, using 

Eq. (S-2), the apparent elastic modulus is about E=219.84 GPa, which is still much smaller than 

the results obtained from MD simulations of 497.6 GPa. 

Thirdly, according to one of the typical equations of state-Murnaghan relationship, the pressure 

effect on elastic modulus E can be related to compressive Young’s modulus E0 by 

 0 0E E P= +β    (S-3) 

where β=3α(1-2ν), P0 is the mean contact pressure, ν is Poisson ratio, E0=130 GPa, ν= 0.28,2  a 

value of α=4 is found to be valid for many materials and silicon in particular.5 Now taking 

silicon nanospheres of 2.0 nm in radius for example, the mean contact pressure P0 at Vr,0=1000 

m/s is about 13.19 GPa (Table 2), therefore, the apparent elastic modulus E should be about 

199.64 GPa, which is much smaller than 497.6 GPa (Table 1). 

In short summary, any single of the three known theories cannot explain the higher elastic 

modulus obtained in present MD simulation. Probably, the three aspects together contribute to 

the hardening effect. This area awaits much more mature theory to consider the dynamic effect. 

6. The Maximum Compression (or the Minimum Gap) Obtained at Normal Impact 

The minimum gap (or the maximum compression) between silicon nanospheres during normal 

impact can be measured by MD simulations (Figure S4), given by  

 ( ) 2 54 5 2
min 0 r,max 0(nm) 0.16 1.677 1d R V E = − ρ −ν   (S-4) 
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Since when two atoms or surfaces are less than equilibrium separation distance, which is about 

0.165~0.2 nm, it can be considered in contact. Thus, assuming *
n min 0.16dδ = − + , then Eq. (S-4) 

can be reduced to  

 ( ) 2 5* 4 5 2
n 0 r,max 01.677 1R V Eδ  = ρ −ν   (S-5) 

The Hertz continuum prediction of the maximum compression during normal impact between 

two frictionless elastic spheres is given by6 

 
( )

( )
n

2 5
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 (S-6) 

The origins of the decrease of the coefficient in Eq. (S-6) can be attributed to the neglect of 

intermolecular repulsive forces and energy dissipations because of dynamic motions of atoms 

and plastic deformation of nanoparticles. 

 

Figure S4. Dependence of the minimum gap between silicon nanosphere of radius 2.0 and 4.0 

nm on the product of ( ) 2 54 5 2
0 r,max 01νR V E ρ −  . Note that R0, Vr,max, ρ, E0 are in unit of nm, m/s, 

kg/m3, Pa, respectively. 
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The decrease of the coefficient from 1.985 to 1.677 is observed. In other words, given the same 

conditions, the amount of displacement predicted by Eq. (S-6) becomes smaller for nanoparticles 

than macroparticles. The origins of this difference are analyzed. Eq. (S-6) is obtained based on 

two frictionless elastic particles without considering intermolecular forces. But for nanoparticles, 

the following factors can contribute to the differences (Figure S5): 

 

 

Figure S5. (a) total normal force Ft, N and mechanical contact force Fc, also called ‘elastic 

repulsive force’; (b) hysteresis phenomena in the Ft, N obtained in the approach and departure 

process; (c) total tangential force Ft, T versus Ft, N between silicon nanospheres of 2.0 nm in 

radius. Vr,0=600 m/s. 

First, the role of intermolecular forces after contact deformation is mainly repulsive. In other 

words, apart from the mechanical contact force which is repulsive in nature, there is an 

additional repulsive force exerting on nanoparticles compared to macroparticles. This can be 

0.0 0.1 0.2 0.3 0.4
-5
0
5

10
15
20
25
30
35
40

 

 

 Ft,N

 Fc

Fo
rc

e 
(n

N)

δn (nm)

(a)

0.0 0.1 0.2 0.3 0.4
-5
0
5

10
15
20
25
30
35
40

 

 

δn (nm)

 Approach
 Departure

F t,N
 (n

N)

(b)

0 5 10 15 20 25 30 35
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

 

 

F t,T
 (n

N)

Ft,N (nN)

(c)

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013



8 

especially reflected from Figure S5-(a): the total normal force Ft, N becomes more repulsive than 

mechanical contact force Fc. 

Second, plastic deformation may happen after compression. This can be reflected from the 

hysteresis as shown in the inset of Figure S5-(b). It can be observed that serious hysteresis 

phenomenon occurs, indicating that the particle is plastically deformed in part and some energy 

has been dissipated into plastic deformation, reserved as strain energy. Note that the abnormal 

increase of normal force in the departing process between 0.3 and 0.4 nm may arise from the 

displacement and/or dislocation of contacting atoms of two opposing surfaces. 

Last but not least, the energy dissipation due to the displacement of contacting atoms on the 

opposing surfaces, such as the thermal vibrations and/or dislocations of interacting atoms can 

lead to additional energy loss and hence the decrease of the coefficient. This can be reflected 

from the total tangential force as shown in Figure S5-(c). The total tangential force Ft, T is given 

by  

 2 2
t, T Y ZF F F= +  (S-7) 

where FY and FZ are the accumulated forces along the Y and Z directions. (The two particles 

impact each other along X-axis, i.e., the normal direction.) 
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