Supporting information:

β-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low-overpotential for lithium-air batteries

Jeapyeong Jung,^a Kyeongse Song,^a Doo Ri Bae,^b Sung Woo Lee,^c Gaehang Lee,^{*b} and Yong-Mook Kang, *^a

 ^a Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea, ^b Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
^c Center for Research Facilities, Chungnam National University, Daejeon 305-764, Republic of Korea.

* Corresponding author E-mail: Yong-Mook Kang; <u>dake1234@dongguk.edu</u>, Gaehang Lee; <u>ghlee@kbsi.re.kr</u>

Figure S1. TEM images showing the morphology changes of β -FeOOH during ultrasonic irradiation; (a) after 10 min., (b) after 30 min., and (c) 60 min.

Figure S2. N₂ adsorption–desorption isotherms of air cathode having β -FeOOH NR bundles catalyst and catalyst-free air cathode. The insert BET surface area and pore volume for β -FeOOH NR bundles and catalyst-free electrode.

Figure S3. SEM images of (a) the pristine air cathode, (b) 1^{st} discharged air cathode, and (c) 1^{st} charged air cathode commonly adopting β -FeOOH NR bundles as the cathode catalyst. (d) SEM image of catalyst-free air cathode after 1^{st} discharge.

Morphological observation indicates that β -FeOOH NR bundles are well mixed with conducting agent and binder in the air cathode having β -FeOOH. After discharge, discharge products (Li₂O₂) are uniformly distributed on the electrode surface without typical toroidal growth compared to the catalyst-free air cathode. Moreover, SEM image of the charged air cathode demonstrates that Li₂O₂ can be effectively dissociated leaving larger amount of pores, which enable Li ions and O₂ gas to easily diffuse inside the air cathode.

Figure S4. (a) Ragone plot comparing the conventional energy storage technologies with the Li-air cells using β -FeOOH NR bundle catalyst. (b) Ragone plot comparing the Li-air cells using β -FeOOH NR bundle catalyst with the conventional Li-ion secondary battery using LiCoO₂ cathode.

As shown in Fig. S4, Ragone plots demonstrate that the Li-air cells using β -FeOOH catalyst have much higher energy density and power density compared to not only the representative energy storage technologies but also the conventional Li-ion secondary batteries.³⁻⁶ In details, the gravimetric energy density of the Li-air cells using β -FeOOH catalyst is approximately 8 times higher than that of the Li ion secondary battery using LiCoO₂ cathode. Even compared to IC engine, the energy density of the Li-air cell using β -FeOOH catalyst looks higher.

Normalizati on standard	Weight of carbon (mAh/g _{(KB}))	Weight of carbon and Li ₂ O ₂ (mAh/g _{(KB+Li2O} ₂₎)	Area (mAh/cm ²)	Weight of electrode (mAh/g _{(electrode}))	Weight of Li ₂ O ₂ (mAh/g _{(Li2O2}))
Li-air cells using β- FeOOH catalyst	7183.1	498.8	2.85	3232.4	6611.94
Li-air cells without catalyst	3622.9	471.7	2.72	3079.5	6226.40

Table S1. The capacity comparison between Li-air cells using β -FeOOH catalyst and those without catalyst using various normalization standard.

We have calculated the capacities of Li-air cells based only on the weight of conducting agent (ketjen black (KB)). Therein, the discharge capacity of Li-air cells using β -FeOOH NR bundles (7183 mAhg_(KB)⁻¹) is almost double that of a catalyst-free cathode (3622 mAhg_(KB)⁻¹). For more reliable comparison in capacity, we recalculated the capacities of Li-air cells using different normalization standard. These results clearly show that Li-air cells using β -FeOOH catalyst exhibit higher capacity than those without catalyst.

Figure S5. Our specific capacity normalization method using the weight of discharge product(Li_2O_2).⁵

References

1. R. Padbury, X. Zhang, Journal of Power Sources, 2011, 196, 4436-4444

2. E.J. Cairns, P. Albertus, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 299-320.

3. H.D. Abruna, J.B. Goodenough, M. Buchanan, *Abstr. Pap. Am. Chem. Soc.*, 2007, 234, 28-ANYL.

4. F. Mizuno, Fundamental Study on Rechargeable Reaction of Lithium–Oxygen Battery. *Symposium on Energy Storage Beyond Lithium Ion: Materials Perspectives*, Oak Ridge National Laboratory, Oak Ridge, TN, 2010, October.

5. Y. C. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, Y. Shao-Horn, *Energy Environ. Sci.*, 2011, **4**, 2999–3007.

6. H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J. M. Tarascon, *ChemSusChem*, 2008, 1, 348–355.