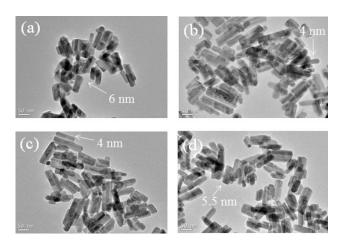

Core/Shell Zn₂GeO₄ Nanorods and Their Size-Dependent Photoluminescence Properties


Songping Wu^a,*, Zhuolin Wang^a, Xin Ouyang^a, Zhiqun Lin^{b,*}

- a. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
- b. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

*To whom correspondence should be addressed. E-mail: chwsp@scut.edu.cn. Fax & Tel: +86-20- 87112897; E-mail: zhiqun.lin@mse.gatech.edu. Tel: +1 404 385 4404.

Figure 1. Thickness of shell for core/shell Zn_2GeO_4 nanorods varied with different temperatures and times.(a) 180 °C, (b) 210 °C and (c) 250 °C for 1 h. (d) 250 °C for 4 h

Figure 2. Thickness of shell for core/shell Zn_2GeO_4 nanorods synthesized at 150 $\,^{\circ}$ C for 6 h varied with various weight ratios (Wt. $_{CTAB}/$ Wt. $_{Zn2GeO4}$): (a) 0.06, (b) 0.5, (c) 2.0, (d) 3.0.