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I. Effectiveness of the rotating magnetic field vs. the gradient field for particle

propulsion

The particle with the magnetic moment M can be involved into translational motion

by the gradient magnetic field ∇H. The velocity acquired by the particle in this field

is Ugrad ∼ M∇H/ξ. Here ξ is the translational viscous resistance coefficient with the

characteristic value ξ ∼ 2πηL, where η is the dynamic viscosity, and L is the characteristic

size of the particle.

The translational motion can be initiated by the rotating magnetic field of amplitude

H if the particle possesses chirality. The velocity acquired by the particle in rotating field

Urot ∼ ΩRCh, where Ω is the angular velocity of the particle rotation and R is the rotation

radius. The chirality coefficient Ch is determined by the geometry of the particle, its typical

values for helices are Ch ∼ 0.1÷ 0.3 (see Fig. 5 in the main text). The characteristic value

of the angular velocity Ω is found from the balance of the external magnetic torque and

viscous torque Ω ∼ MH/κ, where κ is the rotational drag coefficient. For a slender particle

rotating around its longer axis κ ∼ 4πηR2L. The ratio of both velocities is

Urot
Ugrad

∼ Ch
H

R∇H
. (S1)

Let us estimate this ratio for particles with the characteristic size R ∼ 1 µm. The maximal

value of the magnetic field gradients achieved in modern MRI devices is ∇H ∼ 103 Oe/cm.

Substituting this value into Eq. (S1) and using the above estimate for Ch we find that the

ratio Urot/Ugrad ∼ 1 already at very low amplitudes H ∼ 1 Oe of the rotating magnetic field.

In other words, the rotating magnetic field with the amplitude comparable to the magnetic

field of the Earth, propels the particle with the same velocity as the extremal gradient

magnetic field does. Thus, comparing standard experimental set-up with amplitudes of the

rotating field H ∼ 10 ÷ 102 Oe and the field gradients ∇H ∼ 1 Oe/cm, the rotating field

yields a propulsion speed of four to five orders of magnitude higher than that due to the

gradient magnetic field.

II. Rotation matrix

We use the definition of the three Euler angles φ, θ and ψ following Ref. [2]. The com-

ponents of any vector W in the body-fixed coordinate system (BCS) and in the laboratory
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coordinate system (LCS) are determined from the relation WBCS = R ·W, where R is the

rotation matrix. The rotation matrix is expressed explicitly via the Euler angles [3]

R =


cφcψ − sφsψcθ sφcψ + cφsψcθ sψsθ

−cφsψ − sφcψcθ −sφsψ + cφcψcθ cψsθ

sφsθ −cφsθ cθ

 ,

where we use the compact notation, sψ = sinψ, cθ = cos θ, etc.

III. Stability of the low-frequency solution

In this section we study the stability of the low-frequency synchronous stationary solution.

It is characterized by the following values of the Euler angles: ψ = 0, θ = π/2. The third

angle φ̃ ≡ φ− ωt reads

φ̃ = φ0 − arcsin(ω/ω(I)
c ) , (S2)

where ω
(I)
c =

√
A2 +B2 and φ0 is the angle between the total magnetic moment M of the

particle and its transverse component m.

To study the stability of this stationary solution we perturb it by adding small distur-

bances ψ′(t), θ′(t) and φ̃′(t):

ψ → 0 + ψ′(t) , θ → π/2 + θ′(t) , φ̃→ φ̃+ φ̃′(t) . (S3)

Substitution of these relations into the equations of motion (see Eqs. (6)-(8) in the main

text) and linearization over the small perturbations leads to the following system of equations

˙̃φ′(t) = −[Asφ̃ +Bcφ̃]φ̃
′(t) , (S4)

θ̇′(t) = −Asφ̃θ′(t) +Bsφ̃ψ
′(t) , (S5)

ψ̇′(t) = [ω + Csφ̃]θ
′(t)− Ccφ̃ψ

′(t) . (S6)

The perturbation φ̃′(t) appears to be decoupled from the other two perturbations. Using

the stationary solution (S2) the Eq. S4 reduces to

˙̃φ′(t) = −
√
ω
(I) 2
c − ω2 φ̃′(t) . (S7)

It describes the decay of the perturbation φ̃′(t) in the whole interval [0, ω
(I)
c ] of existence of

the low-frequency synchronous solution.
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To study the dynamics of coupled perturbations ψ′(t) and θ′(t) we write them in the

form ∼ eλt. In this way we obtain the homogenous system of algebraic equations for the

perturbation amplitudes ψ and θ

(λ+ Asφ̃)θ −Bsφ̃ψ = 0 , (S8)

−(ω + Csφ̃)θ + (λ+ Ccφ̃)ψ = 0 . (S9)

The increment λ is found from the condition of equality to zero of the determinant of the

system:

λ2 + λ(Asφ̃ + Ccφ̃) + sφ̃(ACcφ̃ −BCsφ̃ −Bω) = 0 . (S10)

Using Eq. (S2), Acφ̃ −Bsφ̃ = ω, and then Eq. (S10) reduces to

λ2 + λ(Asφ̃ + Ccφ̃) + sφ̃ω(C −B) = 0 . (S11)

For a slender particle κ3 < κ1 and thus C = mH/κ3 > B = mH/κ1. Therefore, the

development of the perturbations determines solely by the value of the coefficient sφ̃. When

sφ̃ > 0, both roots of Eq. (S11) are negative (or their real parts are negative) and the

perturbations decay. For sφ̃ < 0, there appears a root with positive real part. It describes

growth of perturbations: the low-frequency solution becomes unstable and it bifurcates into

the high-frequency synchronous regime. The critical value for the transition is determined

by the condition sφ̃ = 0. Taking into account Eq. (S2) and the definition of the angle φ0, i.e.,

sφ0 = A/ω
(I)
c , we finally find the critical value of the field frequency, ωc = A, delimiting the

intervals of stability of the low-frequency (ω < A) and high-frequency (ω > A) synchronous

solution.

IV. Rotational viscous resistance coefficients of a helix

We approximate the rotational viscous resistance coefficients of a helix by the correspond-

ing values for a spheroid enclosing the helix. Let a and b be, correspondingly, the longitudinal

(along the symmetry axis) and transversal semi-axes of spheroid. The respective resistances

due to rotation around the symmetry axis and in perpendicular direction read [4]

κ∥ = 2ηV n−1
⊥ , κ⊥ = 2ηV

a2 + b2

a2n∥ + b2n⊥
, (S12)
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where η is the dynamic viscosity of the liquid, V is the spheroid volume, n∥ and n⊥ =

(1− n∥)/2 are the depolarizing factors of the spheroid. For the prolate spheroid with a > b

and eccentricity e =
√

1− b2/a2 the depolarizing factor along the symmetry axis reads [5]

n∥ =
1− e2

e3

(
1

2
ln

1 + e

1− e
− e

)
. (S13)

For the helical nanomotor with the aspect ratio a/b = 4.5 used in experiments [6], the

following estimate is obtained using Eqs. (S12) and (S13)

κ1/κ3 = κ⊥/κ∥ = 5.61 . (S14)

V. Normal and binormal helices

In this section we provide a short description of geometrical properties of helices with

non-circular cross-section. The more detailed information can be found in Ref. [7].

In the body-fixed coordinate system x1x2x3 with the helix axis x3 the coordinates of the

helix centerline is

X(s) =

[
R cos(λs), R sin(λs),

P

2π
λs

]
. (S15)

Here R and P are the radius and the pitch of the helical filament, respectively; s is the arc

length, and

λ =
1√

R2 + P 2

4π2

. (S16)

The variables R, P and λ can be expressed via curvature κ and torsion τ

κ = Rλ2 , τ =
P

2π
λ2 . (S17)

The helix angle Θ is determined according to the relation

tanΘ = κ/τ = 2πR/P . (S18)

We mention also the following simple relations for the helix angle Θ:

sinΘ = κ/λ = Rλ , cosΘ = τ/λ =
P

2π
λ . (S19)

In terms of κ and τ Eq. (S15) can be written as

X(s) =
[ κ
λ2

cos(λs),
κ

λ2
sin(λs),

τ

λ
s
]
. (S20)
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Let {d1,d2,d3} be a right-handed director basis defined at each point s along the axis of

the filament. d3 = ∂X(s)/∂s is the vector tangent to the centreline of the filament. Vectors

d1 and d2 lie in the cross-sectional plane of the filament. The cross-section is assumed to be

elliptic and the vector d2 is oriented with the longer axis of the cross-section.

There are two characteristic types of helices. For the normal helix, vector d1 aligned

with the shorter cross-sectional axis has a constant (fixed) component along the x3-axis of

helix. The local basis of the normal helix reads:

d1 =
[τ
λ
sin(λs),−τ

λ
cos(λs),

κ

λ

]
.

d2 = [cos(λs), sin(λs), 0] . (S21)

d3 =
[
−κ
λ
sin(λs),

κ

λ
cos(λs),

τ

λ

]
.

In the case of the binormal helix, vector d2 of the longer cross-section has a fixed com-

ponent along the x3-axis of helix. The local basis of the binormal helix reads:

d1 = [− cos(λs),− sin(λs), 0] .

d2 =
[τ
λ
sin(λs),−τ

λ
cos(λs),

κ

λ

]
. (S22)

d3 =
[
−κ
λ
sin(λs),

κ

λ
cos(λs),

τ

λ

]
.

VI. Propulsion velocity of a rotating helix

Let us consider propulsion velocity U ≡ U3 of a single rigid helix rotating about its helical

axis (x3) with a constant angular speed Ω ≡ Ω3. The centerline of the helix at rest is given

by Eq. (S15) above. For translating and rotating helix,

X(s, t) =

[
R cos(λs+ Ωt), R sin(λs+ Ωt),

P

2π
λs+ Ut

]
, (S23)

where U is yet undetermined propulsion velocity. The basic assumption of the local Resistive

Force Theory (e.g. [1]) is that the local force per unit length (force density) exerted on the

slender filament is given by

f = f⊥[u− (u · d3)d3] + f∥(u · d3)d3 , (S24)
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where d3 = ∂X(s, t)/∂s is the local tangent, u = ∂X(s, t)/∂t is the local velocity and f⊥

and f|| are the drag coefficients corresponding to transverse and longitudinal motions.

We substitute the local velocity as u = u⊥ + Ue3 (e3 is unit vector along x3-axis) into

(S24) and setting the total force in the x3-direction to zero, we find that

U

∫ L

0

[
f⊥ + (f∥ − f⊥)(d3 · e3)

2
]
ds = −(f∥ − f⊥)

∫ L

0

(d3 · u⊥)(d3 · e3)ds . (S25)

Here L is the length of the helical filament. Substituting χ = f⊥/f∥ and the expressions for

the local tangent d3 and u⊥ into (S25) one can derive the scaled propulsion velocity as a

function of χ:
U

ΩR
= −

B∥

ξ∥R
=

(χ− 1) sin 2Θ

2
[
1 + (χ− 1) sin2 Θ

] . (S26)

For exponentially thin filament, f⊥ = 2f|| = 4πηE, with a small parameter E = 2/ ln ϵ−1,

where ϵ = 2r/L ≪ 1 with 2r being the typical filament width [12]. Optimizing swimming

speed for prescribed rotation velocity, we find that swimming speed is maximized at the

pitch angle Θ = 1
2
arccos

(
χ−1
χ+1

)
. For χ = 2 this gives θ = 1

2
arccos

(
1
3

)
= 35.26◦ and the

optimal speed is U/ΩR = 0.354.

To account for a finite width of the filament, it was previously demonstrated [9] that one

can use the slender body theory result for a prolate spheroid [10], i.e., χ = 2
(

1−E/2
1+E/2

)
+

O(ϵ2 ln ϵ). The solid line in Fig. 5 in the main text corresponds to the RFT result in Eq. S26

with χ corrected for the finite width of the filament.

The numerical procedure used to produce results shown in Fig. 5 is based on multipole

expansion scheme [11]. The filament is constructed from nearly touching N rigid spheres

(“shish-kebab” filament) having the same radius r. The no-slip condition at the surface of

all spheres is enforced rigorously via the use of direct transformation between solid spherical

harmonics centered at origins of different spheres. The method yields a system of O(NL2)

linear equations for the expansion coefficients and the accuracy of calculations is controlled

by the number of spherical harmonics (i.e. truncation level), L, retained in the series.

This approach has been used before for modeling low-Reynolds-number swimmers, e.g.,

self-propulsion of a rotating helix through heterogenous viscous environment [9].

The spheres composing the helical filament are partitioned along the backbone of the

filamentX(s) (see Eq. (S15) and Figs. S1) so that the distance between centers of neighboring

spheres is set to 2.02r. The motion of the ith sphere composing a rotating helix can be

decomposed into translation and rotation about its center as Vi = Ui + Ωe3 × Xi with
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Ui = Ue3 + Ωe3 × Ri; here Ri is a position vector to the ith sphere center in the fixed

laboratory frame and Xi is the radius vector with origin at the center of ith sphere. The

propulsion velocity is determined by setting the net force exerted on the rotating helix in

the direction of propulsion to zero,
∑

i Fi3 = 0. The normal helix shown in Fig. S1 B is

A B C

FIG. S1. Illustration of particle-based “shish-kebab” helices with R/r = 4, Θ = 57.3◦ and 3.5 turns:

(A) regular helix, (B) normal helix ; (C) binormal helix. The aspect ratio of the cross-section of

normal and binormal helices is 2:1.

produced by positioning a helix of a smaller radius R̂ = R − 2r inside a regular helix of

radius R (in Fig. S1 A). The inner helix has the same pitch P as the outer helix, and thus a

smaller helical angle Θ̂ = tan−1(2πR̂/P ). Binormal helix depicted in Fig. S1 C is obtained

by stacking two identical helices of radius R one on top of the other. Normal and binormal

helices of cross-sectional aspect ratio larger than 1:2 can be built from combining together

three or more helices.

VII. Remanent magnetizing of helices

When the helix is placed in a strong enough magnetic field H ≫ Ha, the magnetization

M of each domain saturates, e.g., orients along H . In the body-fixed coordinate system

H = (H sinα, 0, H cosα), i.e., the external field forms an angle α with the axis of helix.

After removal of the field, M returns to the easy axis e to form the smallest angle between
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M with the previously applied field [8]. In other words, the local value of the remanent

magnetization Mrem is

Mrem =Ms sgn(H · e)e , (S27)

where Ms is the saturation magnetization of magnetics and sgn(x) is the sign function. The

magnetic moment of helix is obtained from Eq. (S27) by integration over the value v of

magnetic layer

M =

∫
Mremdv =

v

L

∫ L

0

Mremds , (S28)

where L is the length of the filament. Here we also assume that the magnetic layer covering

the helix has a constant thickness along the filament.

To determine the longitudinal (along x3-axis) component M∥ ≡ µ and the transverse

components M⊥ ≡ m components of the remanent magnetizing, we need some additional

assumptions about the distribution of the easy axis e(s). Here we consider two simplest

orientations of vector e(s): (i) the easy axis is tangent to the centreline of helix, e(s) = d3;

(ii) the easy axis is directed along the longer cross-sectional axis of the helix, e(s) = d2.

The calculations are performed according to Eqs. (S27) and (S28) with vectors d2 and

d3 taken from Eqs. (S21) and (S22).

[1] J. Gray, G. J. Hancock, J. Exp. Biol. 1955, 32, 802–814.

[2] L. D. Landau, E. M. Lifshitz, Mechanics, 3rd ed.; Pergamon Press, Oxford, 1976.

[3] J. Diebel, Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors;

Matrix, Citeseer, 2006.

[4] G. B. Jeffrey, Proc. R. Soc. London A 1922, 102, 161–179.

[5] L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed.; Pergamon Press,

Oxford, 1984.

[6] A. Ghosh, D. Paria, H. J. Singh, P. L. Venugopalan, A. Ghosh, Phys. Rev. E 2012, 86,

031401.

[7] A. F. da Fonseca, C. P. Malta, D. S. Galvao, Nanotechnology 2006, 17, 5620–5626.

[8] S. Shtrikman, D. Treves, J. Appl. Phys. 1960, 31, 58S–66S.

[9] A. M. Leshansky, Phys. Rev. E 2009, 80, 051911.

[10] J. P. K. Tillet, J. Fluid Mech. 1970, 44, 401–417.

9

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013



[11] A. V. Filippov, J. Colloid Interface Sci. 2000, 229, 184–195.

[12] S. Kim, S. J. Karrila, Microhydrodynamics; Butterworth–Heinemann, Boston, 1991.

10

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013


