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I. DYNAMICALLY INDENTED ELASTOMERS BY A FLAT PUNCH

Depending on the nature of contact and materials probed, the elastic deformation of the tip-sample contact can
be adequately described by different contact mechanics models. In some cases when adhesive forces are negligible
(e.g., contact on stiff materials), a simple contact mechanics model like Hertz model provides a sufficiently accurate
description. However, as is the case for most elastomers, adhesive forces need to be considered as well. It is believed
that the two possible extreme cases when adhesive forces manifest themselves in tip-sample contacts are described by
two models for elastic deformation: the Derjaguin, Muller and Toporov (DMT) model34, which includes long-range
adhesive forces outside the contact area (like van der Waals forces), and the Johnson, Kendall and Roberts (JKR)
model,35 which includes short-range adhesive forces acting inside the contact area (like chemical forces). Transitional
descriptions between the two limits have been formulated either within analytical models37,39 or empirical equations.38

For simplicity we adopted the Schwarz model39 to derive the necessary equations describing our tip-sample contact
mechanics.
In the Schwarz model, the work of adhesion γ is separated into two components, γ = w1 + w2, to acknowledge

both contributions from short-range adhesive forces and long-range adhesive forces. The short-range adhesive forces
contribute as a delta function similar to the JKR model, with w1 being the integral area under the delta function. On
the other hand, the long-range forces are treated similar to the DMT model, with an extra adhesive force of the form
F2 = 2πRw2, where R is the tip radius. The proportion between the two contributions, short versus long adhesive
forces, comes naturally by introducing a transition parameter τ1 defined as the square root of the ratio between w1

and γ:

τ1 =

√
w1

γ
=

√
w1

w1 + w2
. (1)

In this formulation, the DMT limit is obtained when τ1 = 0 (w1 = 0) and the JKR limit is obtained when τ1 = 1
(w2 = 0). The adhesive force is defined as a superposition of JKR and DMT contributions, Fa = −3

2πRw1 − 2πRw2,

and is added to the effective applied force F . With that, a Hertz-type tip-sample interaction, a = (3RF/4E∗)1/3,
provides the force dependences for the contact radius and indentation depth as:

a =

(
3R

4E∗

)1/3
(

τ1√
4− τ21

√
3Fa +

√
F + Fa

)2/3

(2)

and

δ =
a2

R
− τ1√

4− τ21

√
4aFa

RE∗ , (3)

respectively. Here, E∗ = ((1 − ν2T)/ET + (1 − ν2S)/ES)
−1 is defined as the reduced elastic modulus between tip and

sample, with νT, ET and νS, ES being the Poisson’s ratio and Young’s modulus for the tip and sample, respectively.
In the case of compliant materials, E∗ is comparable with the indentation modulus of the indented sample MS =
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(1− ν2S)/ES as the contribution from the much stiffer tip, 1/MT , is negligible. The DMT and JKR expressions for a
and δ are readily obtained from (2) and (3) by particularizing τ1 for each of the two cases.
The contact stiffness is defined in general as the derivative of the applied force with respect to deformation,

k∗c = ∂F/∂δ. By introducing a and δ from (2) and (3) into k∗−1
c = ∂δ/∂F = (∂δ/∂a)(∂a/∂F ) , the contact stiffness

is obtained as

k∗c = (6RE∗2)1/3

√
3(4− τ21 )

√
F + Fa

(
τ1√
4−τ2

1

√
3Fa +

√
F + Fa

)2/3

2τ1
√
Fa +

√
3(4− τ21 )

√
F + Fa

. (4)

The expressions for DMT and JKR contact stiffness for a spherical tip indenting a flat substrate can be obtained from
(4) by replacing τ1 by either 0 or 1.28,36

The above description for the contact stiffness works well in the case of a spherical tip quasi-statically (low cycling
frequency) indenting a flat surface. However, a particular case was rationalized for the dynamic (high cycling fre-
quency) indentation of an elastomer. Thus, in the case of a fast oscillation, it has been shown40,41 that viscoelastic
effects can hinder the peripheral variations imposed by the oscillation onto the contact area. As a result, the contact
area remains approximately constant during an oscillation and the contact geometry resembles that of a ”flat punch”
configuration. Therefore, in the limit of the dynamic flat punch approximation, the stiffness response of a dynamically
indented polymer is equivalent to that of a flat punch with the contact radius of the static configuration (Schwarz
model in our case). With (2), the expression for the contact stiffness of a dynamic flat punch in the Schwarz model
becomes

k∗ = 2aE∗ = (6RE∗2)1/3

(
τ1√
4− τ21

√
3Fa +

√
F + Fa

)2/3

. (5)

Also, by introducing a = k∗/2E∗ into (3), the deformation δ can be expressed in terms of the contact stiffness of a
dynamic flat punch:

δ =
k∗2

4RE∗2 − τ1√
4− τ21

√
2k∗Fa

RE∗2 . (6)

This can be rewritten as:

δ/
√
k∗ = α+ βk∗3/2, (7)

with α = − τ1√
4−τ2

1

√
2Fa/(RE∗2) being the y-intercept and β = 1/(4RE∗2) the slope of the linear dependence of

δ/
√
k∗ vs k∗3/2. As shown in Fig. S1, when plotted in δ/

√
k∗ vs k∗3/2 coordinates, the two contact geometries,

spherical tip and flat punch on a flat surface, are differentiated from each other through τ1. It follows from here that
the elastic reduced modulus can be calculated solely from the slope,

E∗ = 1/
√
4Rβ (8)

and the transition parameter τ1 from the slope and y-intercept values,

τ1 =
2 | α |√
8Faβ + α2

. (9)

Within the dynamic flat punch limit, a calibration for δ can be easily carried out by calculating the indentation
depth at the maximum negative applied force, F = −Fa, as a function of two measured values of contact stiffness:
k∗a- the contact stiffness at F = −Fa and k∗0- the contact stiffness at F = 0. From the above equations:

k∗a =

(
18RE∗2Fa

τ21
4− τ21

)1/3

(10)

and

k∗0 =
(
6RE∗2Fa

)1/3(
1 +

τ1
√
3√

4− τ21

)2/3

. (11)
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Spherical tip:   τ1 = 0.0;   τ1 = 0.5;   τ1 = 1.0
Punch limit:    τ1 = 0.0;    τ1 = 0.5;    τ1 = 1.0

FIG. S1: In the Schwarz model, the distinction between contact geometries with a spherical tip and a ”dynamic flat punch”
indenting a flat surface is evident when δ/

√
k∗ is plotted versus k∗3/2 for various values of τ1.

By taking the ratio of these two quantities, we can define the parameter

κ =

(
k∗a
k∗0

)3

=
3τ21(√

4− τ21 + τ1
√
2
)2 . (12)

By inverting (12), the transition parameter τ1 can be found as a function of κ

τ1 = 2/

√
1 + 3

(√
1/κ− 1

)2
(13)

and used in (10) and (6) to calculate the indentation depth at F = −Fa:

δa = − Fa

2k∗a

[(
k∗0
k∗a

)3/2

− 1

]−2

. (14)

δa given by (14) can be used as a reference measurement to calibrate the indentation depths when Fa, k
∗
a and k∗0 are

known. This calibration procedure for the indentation depth was applied for the analysis of stiffness-depth curves.
As it can be seen in Fig. S1, the two geometries are indistinguishable for τ1 = 0. However, for non-zero values of

τ1, the plots for the two geometries can be easily distinguished. On one hand, the dependence is slightly non-linear
and there is not a significant change in the case of a spherical tip as τ1 ranges from 0 to 1. On the other hand, in
the dynamic flat punch limit, the dependence is linear for any value of τ1 and large shifts are observed with changes
in τ1 while the slope is preserved over the entire range. The calculations here were performed for an applied force
ranging from −5 nN to 100 nN, Fa = 5 nN, R = 15 nm, and E∗ = 3 GPa. In our experiment, the stiffness-depth
curves measured on both PP and PS resemble the theoretical dependences of a dynamic flat punch on flat surface.

[1] N. A. Burnham and R. J. Colton, J. Vac. Sci. Technol. A, 1989, 7, 2906.
[2] P. Maivald, H. J. Butt, S. A. C.Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings and P. K. Hansma, Nanotechnology,

1991, 2, 103.
[3] S. Magonov, V. B. Elings and M. Whangbo, Surface Sci., 1997, 375, L385.
[4] O. Sahin, S. Magonov, C. Su, C. F. Quate and O. Solgaard, Nature Nanotech., 2007, 2, 507.
[5] S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf and B. J. Rodriguez, Nanotechnology, 2007, 18, 435503.
[6] B. Pittenger, N. Erina and C. Su, Bruker Application Note AN128, 2010.
[7] R. Garcia and E. T. Herruzo, Nature Nanotech., 2012, 7, 217.

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013



4

[8] U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, M. Göken and W. Arnold, Surf. Interface Anal., 2002, 33,
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