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1. The total system of equations for interaction between phase transformation and

dislocation evolution1

We designate contractions of tensorsAAA andBBB over one and two indices asAAA···BBB andAAA:::BBB; the transpose

of AAA is AAAT , III is the unit tensor, and ⊗ is a dyadic product.

Below we described coupled system of PFA equations for martensitic PT and dislocation evolution

developed in1. This theory combines the most advanced PFA for dislocations2 and PT3 with addi-

tional coupling terms1. Both PFAs2,3 are the only available large strain formulations; current letter is

based on fully geometrically nonlinear formulation as well. Current work keeps also other advantages

of2,3: advanced thermodynamic potential that describes some conceptual features of the e�ect of the

stress tensor, reproducing, in particular, stress-independent transformation strain tensor and Burgers

vector and desired local stress-strain curves. Also, the desired, mesh-independent, dislocation height

is introduced for any slip orientation, leading to well-posed formulation. Coupling between PT and

dislocations includes nonlinear kinematics and corresponding mechanical driving forces, inheritance

of dislocation during PT, and dependence of all material parameters for dislocations on the order

parameter η that describes PT, which results also in the extra driving force for PT due to change in

dislocation energy during the PT.

Let the motion of elastoplastic material with PT be described by equation rrr = rrr (rrr0, t), where rrr

and rrr0 are the positions of a material point at time t (deformed con�guration V ) and t0 (undeformed

con�guration V0, which is in A state). All equations are considered in V0. Multiplicative decomposition

of the deformation gradient into elastic, transformational, and plastic parts is used: FFF = ∂rrr/∂rrr0 =

FFF e···FFF t···FFF p. Transformation FFF t and plastic FFF p deformation gradients are described by equations2,3:

Ft = I + εεεt(aη
2(1− η)2 + (4η3 − 3η4)), (1)

ḞFF p ·FFF−1p =

p∑
α=1

mα∑
ω=1

1

Hα
bbbαω ⊗nnnαφ̇(ξ̄αω), (2)
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The order parameter η for PT varies from 0 (in A) to 1 (in M); the order parameter for dislocations in

the αth plane with the unit normal nnnα along the ωth slip direction with the Burgers vector bbbαω, ξαω,

varies from 0 to n when n dislocations appear; Int(ξαω) = n and ξ̄αω := ξαω − Int (ξαω) ∈ [0, 1] are

the integer and fractional parts of ξαω. In Eqs.(1) and (2), εεεt = FFF t(1)−III is the transformation strain,

a is the parameter, φ(ξ̄) = ξ̄2(3− 2ξ̄), and Hα is the dislocation height. For compactness, we consider

single M variant only; generalization for multiple M variants can be done as in3. The Helmholtz free

energy per unit undeformed volume is accepted as the sum of elastic, thermal, crystalline, and gradient

energies related to PT and dislocations:

ψ = ψe + f + ψ∇η + ψξ + ψ∇ξ ; ψ∇η = 0.5βη|∇∇∇η|2; (3)

ψξ =

p∑
α=1

mα∑
ω=1

Aα(η)ξ̄2αω(1− ξ̄αω)2;

ψ∇ξ =
βξ(η)

2

p∑
α=1

mα∑
ω=1

{
∇∇∇ξ̄2αω + [M(1− ξ̄αω)2 − 1](∇∇∇ξ̄αω ·nnnα)2

}
;

f = Acη
2 + (∆G− 2Ac)η

3 + (Ac − 3∆G)η4. (4)

Here Ac = A0(θ− θc) and ∆G = ∆z(θ− θe); θ, θe, and θc are the temperature, the phase equilibrium

temperature for A-M, and the critical temperature for the loss of A stability; βξ and βη are the gradient

energy coe�cients, and A0 and M are parameters. The coe�cient Aα, which determines the yield

strength for dislocations, is a periodic step-wise function of the coordinate along the normal to the slip

plane nnnα
2. The thermodynamic procedure similar to that in2�4 results in the elasticity rule for the

nonsymmetric Piola-Kirchho� stress tensor (force per unit area in V0) PPP ···FFF T
p ···FFF T

t = ∂ψ

∂FFF e
and expressions

for the dissipation rate to due PTs Dη = Xηη̇ ≥ 0 and dislocations Dξ = Xαω ξ̇αω ≥ 0. Then the

simplest linear relationships between thermodynamic forces and rates leads to the Ginzburg-Landau

equations

1

Lη

∂η

∂t
= Xη = PPP T ···FFF e:::

∂FFF t
∂η
···FFF p +∇∇∇ ·

(
∂ψ

∂∇∇∇ηi

)
− ∂ψ

∂η
, (5)

1

Lξ(η)

∂ξαω
∂t

= Xαω = PPP T ···FFF e::: FFF t···
∂FFF p
∂ξαω

+∇∇∇ ·
(

∂ψ

∂∇∇∇ξαω

)
− ∂ψ

∂ξαω
, (6)

where Lξ and Lη are the kinetic coe�cients. All parameters in equations for dislocations depend on

η according to the rule B = BA + (BM − BA)φ(η), where BA and BM are the value of a parameter

in A and M. This in turn leads to contributions of the dislocation-related terms in Ginzburg-Landau

Eq.(5) for PT. In addition, both processes are coupled through the mechanical driving force (stress
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power) in Eqs.(5),(6) and evolving stress �eld.

It is assumed for simplicity that dislocations are inherited when di�use A-M interface passes

through them, their Burgers vector and normal to slip plane transform to bbbαωM = FFF t · bbbαωA and

nnnαωM = nnnαωA ·FFF
−1
t /|nnnαωM ·FFF

−1
t |. That means that in the undeformed state V0 slip systems of A and M

coincides. Equilibrium equation∇∇∇·PPP = 0 completes our system. Cubic-tetragonal PT was considered.

Isotropic quadratic elastic potential ψe in terms of Lagrangian elastic strain EEEe = (FFF Te ·FFF e−III)/2 with

shear modulus µ = 71.5GPa and bulk modulusK = 112.6GPa (the same for both phases) was used for

simplicity below. The following parameters for PT and all slip systems have been used in all problems:

Lξ = 2600(Pa ·s)−1, M = 0.05, H = 0.7nm, |bbb| = 0.35nm, γ = 0.5, βξ = 7.5 ·10−11N , Aα = 0.75GPa

for A, Aα = 2.25GPa for M, βη = 2.59 · 10−10N , Lη = 2600(Pa · s)−1, A0 = 20.6MPa/K,

∆z = 5.05MPa/K, θ = 298K, θe = 100K, θc = −90K, θ̄c = 504K, εxt = εyt = −0.05, εxyt = 0.1 (i.e.,

ε0t = −0.1 and γt = 0.2). For such material parameters, the phase equilibrium pressure pe = 10, the

critical pressure for instability of the low pressure phase (LPF) is pcl = 20, and the critical pressure for

instability of the high pressure phase (HPF) is pch = −10. Negative pch was chosen because otherwise

reverse PT would occur at pressure release to zero through homogeneous nucleation, even if interfaces

were arrested.

2. Pressure-induced PT at a single dislocation

First, we created one dislocation in the left grain by applying shear displacement, and we arrested it

at the grain boundary by stopping to solve the Ginzburg-Landau equation for dislocations. Then the

applied shear stress was reduced to zero, and we obtained a sample with a single dislocation per two

nanograins, which mimics initially annealed material. After this, all mechanical boundary conditions

were substituted with homogeneous stresses (pressure) normal to the deformed surface. It was found

that the lowest pressure at which the nucleus appears is ph = 15.75 (which is in the middle between pe

and pcl), after which it grows and �lls essential part of the grain (Fig. S1). This is reasonable, because

15.75 is signi�cantly higher than pe, which determines the local interface propagation pressure. Thus,

even one dislocation signi�cantly reduces the pressure required to nucleate HPP , but it is still much

higher than pe; k = −phεt0 = 1.575. PT is not completed because pressure in the transformed region

and at the interface reduces below pe due to the transformation volume decrease.
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Figure 1: Stationary distribution of high pressure phase in the presence of a single dislocation and

under the hydrostatic pressure p̄ = 15.75.
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