Electronic Supplementary Information

Fe_3O_4 (a) MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction

Fei Ke,^{ab} Ling-Guang Qiu*^c and Junfa Zhu*^{ab}

- ^a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (P.R. China)
- ^b Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (P.R. China)
- Fax: (+86)-551-5141078; E-mail: jfzhu@ustc.edu.cn
- ^c Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (P.R. China)
 Fax: (+86)-551-5108212; E-mail: lgqiu@ahu.edu.cn

Fig. S1 SEM images (a,b) and TEM images (c,d) of the Fe₃O₄@MIL-100(Fe) core-shell magnetic catalysts after the catalytic reaction.

GC-MS spectra for Chalcones

Elemental Composition Report

Multiple Mass Analysis: 61 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

326 formula(e) evaluated with 46 results within limits (up to 50 closest results for each mass)

Minimum:	1.00				0.0	
Maximum:	100.00		4.0	5.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
26.0141	1.06	26.0157	-1.6	-59.6	2.0	C_2H_2
27.0230	10.82	27.0235	-0.5	-17.6	1.5	C_2H_3
29.0397	7.26	29.0391	0.6	19.8	0.5	C_2H_5
38.0149	2.55	38.0157	-0.8	-19.7	3.0	C_3H_2
39.0233	11.29	39.0235	-0.2	-4.5	2.5	C_3H_3
41.0391	11.17	41.0391	0.0	-0.6	1.5	C_3H_5
42.0456	2.24	42.0470	-1.4	-32.1	1.0	C_3H_6
43.0537	10.39	43.0548	-1.1	-25.0	0.5	C_3H_7
50.0158	1.81	50.0157	0.1	3.0	4.0	C_4H_2
51.0232	64.64	51.0235	-0.3	-5.4	3.5	C_4H_3
52.0306	7.21	52.0313	-0.7	-13.5	3.0	C_4H_4
53.0391	1.44	53.0391	0.0	-0.5	2.5	C_4H_5
55.0557	3.07	55.0548	0.9	16.8	1.5	C_4H_7
56.0624	2.83	56.0626	-0.2	-3.6	1.0	C_4H_8
57.0698	12.06	57.0704	-0.6	-11.0	0.5	C_4H_9
62.0169	2.44	62.0157	1.2	20.2	5.0	C_5H_2

63.0239	6.88	63.0235	0.4	6.7	4.5	C_5H_3
65.0399	1.48	65.0391	0.8	11.9	3.5	C_5H_5
71.0879	4.07	71.0861	1.8	25.7	0.5	$C_{5}H_{11}$
74.0154	6.11	74.0157	-0.3	-3.4	6.0	C_6H_2
75.0236	6.96	75.0235	0.1	1.7	5.5	C ₆ H ₃
76.0319	11.82	76.0313	0.6	7.9	5.0	C_6H_4
77.0381	100.00	77.0391	-1.0	-13.3	4.5	C_6H_5
78.0437	7.93	78.0470	-3.3	-41.6	4.0	C_6H_6
79.0532	1.08	79.0548	-1.6	-19.9	3.5	C_6H_7
85.1026	2.51	85.1017	0.9	10.3	0.5	C_6H_{13}
89.0373	5.19	89.0391	-1.8	-20.5	5.5	C_7H_5
90.0461	1.04	90.0470	-0.9	-9.4	5.0	C_7H_6
102.0470	13.33	102.0470	0.0	0.5	6.0	C_8H_6
103.0556	28.39	103.0548	0.8	8.0	5.5	C_8H_7
105.0344	28.99	105.0340	0.4	3.4	5.5	C_7H_5O
115.0528	1.44	115.0548	-2.0	-17.2	6.5	C_9H_7
130.0439	6.00	130.0419	2.0	15.6	7.0	C_9H_6O
131.0489	26.88	131.0497	-0.8	-6.0	6.5	C_9H_7O
132.0559	2.68	132.0575	-1.6	-12.2	6.0	C_9H_8O
151.0583	1.28	151.0548	3.5	23.3	9.5	$C_{12}H_7$
152.0663	2.24	152.0626	3.7	24.3	9.0	$C_{12}H_8$
153.0665	1.24	153.0704	-3.9	-25.6	8.5	$C_{12}H_9$
165.0704	7.03	165.0704	0.0	-0.2	9.5	$C_{13}H_9$
176.0600	1.36	176.0626	-2.6	-14.8	11.0	$C_{14}H_8$
177.0684	1.72	177.0704	-2.0	-11.4	10.5	$C_{14}H_9$
178.0788	8.21	178.0783	0.5	3.1	10.0	$C_{14}H_{10}$
179.0848	13.60	179.0861	-1.3	-7.1	9.5	$C_{14}H_{11}$
180.0954	4.15	180.0939	1.5	8.3	9.0	$C_{14}H_{12}$
207.0809	78.56	207.0810	-0.1	-0.4	10.5	$C_{15}H_{11}O$
208.0882	50.73	208.0888	-0.6	-3.0	10.0	$C_{15}H_{12}O$

2. (*E*)-1-(4-Fluorophenyl)-3-phenylprop-2-en-1-one, White solid.

Elemental Composition Report

Multiple Mass Analysis: 95 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

976 formula(e) evaluated with 66 results within limits (up to 50 closest results for each mass)

Minimum:	1.00				0.0	
Maximum:	100.00		4.0	5.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
26.0140	1.05	26.0157	-1.7	-63.4	2.0	C_2H_2
27.0235	2.88	27.0235	0.0	0.9	1.5	C_2H_3
38.0155	2.81	38.0157	-0.2	-3.9	3.0	C_3H_2
39.0238	10.31	39.0235	0.3	8.3	2.5	C_3H_3
40.0282	1.27	40.0313	-3.1	-77.4	2.0	C_3H_4
49.0080	1.22	49.0078	0.2	3.6	4.5	C_4H
50.0155	25.47	50.0157	-0.2	-3.0	4.0	C_4H_2
51.0229	59.45	51.0235	-0.6	-11.3	3.5	C_4H_3
52.0292	10.16	52.0313	-2.1	-40.4	3.0	C_4H_4
53.0041	2.65	53.0027	1.4	25.7	3.5	C ₃ HO
53.0398	2.49	53.0391	0.7	12.7	2.5	C_4H_5
57.0143	4.93	57.0141	0.2	4.3	2.5	C_3H_2F
61.0069	1.06	61.0078	-0.9	-15.2	5.5	C ₅ H
62.0150	5.46	62.0157	-0.7	-10.5	5.0	C_5H_2
63.0232	13.93	63.0235	-0.3	-4.4	4.5	C_5H_3
64.0346	1.27	64.0324	2.2	33.7	0.0	C ₂ H ₅ OF
65.0424	1.17	65.0391	3.3	50.3	3.5	C_5H_5
68.0052	4.03	68.0062	-1.0	-15.1	4.0	C_4HF
73.0075	1.33	73.0078	-0.3	-4.5	6.5	C ₆ H
74.0153	16.37	74.0157	-0.4	-4.7	6.0	C_6H_2

75.0234	59.18	75.0235	-0.1	-1.0	5.5	C_6H_3
76.0313	18.01	76.0313	0.0	0.0	5.0	C_6H_4
77.0384	69.86	77.0391	-0.7	-9.4	4.5	C_6H_5
78.0447	7.71	78.0470	-2.3	-28.8	4.0	C_6H_6
81.0135	1.18	81.0141	-0.6	-6.8	4.5	C_5H_2F
83.0310	1.64	83.0297	1.3	15.6	3.5	C_5H_4F
86.0165	1.70	86.0168	-0.3	-3.4	3.0	C_4H_3OF
87.0219	2.23	87.0235	-1.6	-18.1	6.5	C_7H_3
88.0291	1.06	88.0313	-2.2	-25.0	6.0	C_7H_4
89.0384	3.07	89.0391	-0.7	-8.1	5.5	C_7H_5
93.0126	1.13	93.0141	-1.5	-15.6	5.5	C_6H_2F
94.0206	6.20	94.0219	-1.3	-13.6	5.0	C_6H_3F
95.0289	96.23	95.0297	-0.8	-8.5	4.5	C_6H_4F
96.0339	8.91	96.0375	-3.6	-37.8	4.0	C_6H_5F
101.0407	4.19	101.0403	0.4	4.3	2.5	C ₅ H ₆ OF
102.0464	20.01	102.0470	-0.6	-5.4	6.0	C_8H_6
103.0546	47.67	103.0548	-0.2	-1.7	5.5	C_8H_7
107.0299	1.64	107.0297	0.2	1.8	5.5	C_7H_4F
109.0440	3.87	109.0454	-1.4	-12.4	4.5	C_7H_6F
113.0367	1.01	113.0391	-2.4	-21.5	7.5	C ₉ H ₅
115.0544	3.82	115.0548	-0.4	-3.3	6.5	C_9H_7
120.0368	7.42	120.0375	-0.7	-6.1	6.0	C ₈ H ₅ F
121.0440	1.32	121.0454	-1.4	-11.2	5.5	C_8H_6F
123.0239	56.83	123.0235	0.4	3.5	9.5	$C_{10}H_3$
131.0497	31.27	131.0497	0.0	0.1	6.5	C ₉ H ₇ O
133.0443	6.20	133.0454	-1.1	-7.9	6.5	C ₉ H ₆ F
134.0551	1.38	134.0532	1.9	14.3	6.0	C ₉ H ₇ F
135.0634	2.28	135.0610	2.4	17.7	5.5	C ₉ H ₈ F
148.0345	12.31	148.0324	2.1	13.9	7.0	C ₉ H ₅ OF
149.0402	4.61	149.0403	-0.1	-0.5	6.5	C ₀ H ₆ OF
151.0512	1.11	151.0548	-3.6	-23.7	9.5	$C_{12}H_7$
163.0539	2.12	163.0548	-0.9	-5.4	10.5	$C_{13}H_7$
165.0730	2.87	165.0716	1.4	8.7	5.5	$C_{10}H_{10}OF$
170.0557	2.97	170.0532	2.5	14.8	9.0	$C_{12}H_7F$
176.0663	2.23	176.0637	2.6	14.5	7.0	$C_{11}H_0OF$
177 0747	6 4 1	177 0716	31	177	6.5	$C_{11}H_{10}OF$
178.0804	3.29	178.0794	1.0	5.7	6.0	$C_{11}H_{11}OF$
183.0648	10.80	183.0610	3.8	20.7	9.5	C ₁₂ H ₈ F
184 0698	1 96	184 0688	1.0	53	9.0	C ₁₂ H ₀ F
194 0539	1.90	194 0532	0.7	37	11.0	C14H ₇ F
195.0600	1.10	195.0610	-1.0	-5.1	10.5	$C_{14}H_0F$
196 0704	9.46	196 0688	1.0	8.0	10.0	$C_{14}H_{0}F$
197 0788	18 89	197 0767	2.1	10.9	95	C14H19I
198 0838	5 57	198 0845	-0.7	-3.4	9.0	$C_{14}H_{10}F$
225 0704	100.00	225 0716	_1 2	-5.2	10.5	
225.0704	68 3/	225.0710	-1.2	_3.2	10.5	
220.0101	00.54	220.0774	-0.7	-5.1	10.0	

3. (*E*)-1-(2-Chlorophenyl)-3-phenylprop-2-en-1-one, White solid.

Elemental Composition Report

Multiple Mass Analysis: 65 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

1128 formula(e) evaluated with 38 results within limits (up to 50 closest results for each mass)

Minimum:	1.00				0.0	
Maximum:	100.00		4.0	5.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
38.0141	3.68	38.0157	-1.6	-40.8	3.0	C_3H_2
50.0160	13.94	50.0157	0.3	7.0	4.0	C_4H_2
51.0234	26.23	51.0235	-0.1	-1.5	3.5	C_4H_3
52.0308	6.94	52.0313	-0.5	-9.6	3.0	C_4H_4
53.0050	2.56	53.0027	2.3	42.6	3.5	C ₃ HO
62.0156	3.68	62.0157	-0.1	-0.8	5.0	C_5H_2
63.0223	12.61	63.0235	-1.2	-18.6	4.5	C_5H_3
64.0284	1.89	64.0313	-2.9	-45.3	4.0	C_5H_4
74.0147	17.63	74.0157	-1.0	-12.8	6.0	C_6H_2
75.0233	39.13	75.0235	-0.2	-2.3	5.5	C_6H_3
76.0311	26.62	76.0313	-0.2	-2.6	5.0	C_6H_4
84.9840	5.79	84.9845	-0.5	-5.9	3.5	$C_4H_2^{35}Cl$
86.9820	2.23	86.9816	0.4	5.1	3.5	$C_4H_2^{37}Cl$
88.0309	3.57	88.0313	-0.4	-4.5	6.0	C_7H_4
89.0384	9.30	89.0391	-0.7	-8.1	5.5	C_7H_5
101.0405	3.24	101.0391	1.4	13.6	6.5	C_8H_5
102.0469	23.55	102.0470	-0.1	-0.5	6.0	C_8H_6
103.0551	36.53	103.0548	0.3	3.2	5.5	C_8H_7
111.0007	46.07	111.0002	0.5	4.9	4.5	$C_6H_4^{35}Cl$
113.0000	14.84	113.0027	-2.7	-24.2	8.5	C ₈ HO

131.0478	74.59	131.0497	-1.9	-14.4	6.5	C ₉ H ₇ O
132.0503	7.38	132.0520	-1.7	-12.7	2.0	$C_7 H_{11}^{37} Cl$
138.9944	35.11	138.9951	-0.7	-4.8	5.5	$C_7H_4O^{35}Cl$
139.9992	2.45	139.9974	1.8	13.2	1.0	C ₅ H ₈ ³⁵ Cl ³⁷ Cl
140.9943	13.84	140.9921	2.2	15.5	5.5	$C_7H_4O^{37}Cl$
141.9962	1.34	141.9999	-3.7	-26.4	5.0	$C_7H_5O^{37}Cl$
151.0575	3.79	151.0548	2.7	18.0	9.5	$C_{12}H_7$
176.0647	6.58	176.0626	2.1	11.9	11.0	$C_{14}H_8$
177.0723	5.13	177.0704	1.9	10.6	10.5	$C_{14}H_9$
178.0779	23.02	178.0783	-0.4	-2.0	10.0	$C_{14}H_{10}$
179.0875	23.43	179.0861	1.4	8.0	9.5	$C_{14}H_{11}$
207.0805	13.68	207.0810	-0.5	-2.4	10.5	$C_{15}H_{11}O$
207.9655	2.12	207.9661	-0.6	-2.7	9.0	$C_{11}H_4^{35}Cl^{37}Cl$
213.0619	1.00	213.0627	-0.8	-3.7	0.5	$C_9H_{17}O^{35}Cl^{37}Cl$
241.0419	100.00	241.0420	-0.1	-0.5	10.5	$C_{15}H_{10}O^{35}Cl$
242.0492	90.07	242.0498	-0.6	-2.7	10.0	$C_{15}H_{11}O^{35}Cl$
243.0419	54.37	243.0391	2.8	11.7	10.5	$C_{15}H_{10}O^{37}Cl$
244.0441	32.38	244.0469	-2.8	-11.4	10.0	$C_{15}H_{11}O^{37}Cl$

Multiple Mass Analysis: 56 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

473 formula(e) evaluated with 43 results within limits (up to 50 closest results for each mass)

Minimum:	1.00			0.0
Maximum:	100.00	4.0	5.0	50.0

Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
27.0237	3.75	27.0235	0.2	8.3	1.5	C_2H_3
38.0167	2.63	38.0157	1.0	27.6	3.0	C_3H_2
39.0236	29.08	39.0235	0.1	3.2	2.5	C_3H_3
41.0392	2.85	41.0391	0.1	1.8	1.5	C_3H_5
43.0551	5.64	43.0548	0.3	7.5	0.5	C_3H_7
44.9804	5.83	44.9799	0.5	11.2	1.5	CHS
51.0235	17.48	51.0235	0.0	0.5	3.5	C_4H_3
52.0300	2.61	52.0313	-1.3	-25.0	3.0	C_4H_4
55.0549	2.56	55.0548	0.1	2.3	1.5	C_4H_7
56.9813	4.25	56.9799	1.4	24.6	2.5	C_2HS
57.0703	6.89	57.0704	-0.1	-2.2	0.5	C_4H_9
57.9881	1.74	57.9877	0.4	6.5	2.0	C_2H_2S
62.0146	1.50	62.0157	-1.1	-16.9	5.0	C_5H_2
63.0239	4.61	63.0235	0.4	6.7	4.5	C_5H_3
69.0717	1.57	69.0704	1.3	18.5	1.5	C ₅ H ₉
71.0866	5.27	71.0861	0.5	7.4	0.5	C_5H_{11}
74.0160	3.36	74.0157	0.3	4.7	6.0	C_6H_2
75.0249	3.91	75.0235	1.4	19.0	5.5	C_6H_3
76.0303	4.23	76.0313	-1.0	-13.2	5.0	C_6H_4
77.0391	29.39	77.0391	0.0	-0.3	4.5	C_6H_5
78.0444	1.83	78.0470	-2.6	-32.7	4.0	C_6H_6
81.9892	2.04	81.9877	1.5	18.0	4.0	C_4H_2S
82.9950	9.10	82.9955	-0.5	-6.6	3.5	C_4H_3S
83.0868	1.17	83.0861	0.7	8.7	1.5	C_6H_{11}
84.0021	1.60	84.0034	-1.3	-15.1	3.0	C_4H_4S
85.1014	3.43	85.1017	-0.3	-3.8	0.5	C_6H_{13}
102.0473	10.96	102.0470	0.3	3.4	6.0	C_8H_6
103.0547	22.12	103.0548	-0.1	-0.7	5.5	C_8H_7
110.9902	46.45	110.9905	-0.3	-2.4	4.5	C ₅ H ₃ OS
111.9949	1.78	111.9949	0.0	-0.1	9.0	C ₈ O
115.0537	1.50	115.0548	-1.1	-9.3	6.5	C_9H_7
130.0457	1.34	130.0452	0.5	3.6	2.0	$C_6H_{10}OS$
135.9984	4.21	135.9983	0.1	0.8	6.0	C_7H_4OS
141.0723	4.68	141.0738	-1.5	-10.6	2.5	$C_8H_{13}S$
152.0655	4.77	152.0660	-0.5	-3.1	4.0	$C_9H_{12}S$
153.0700	4.70	153.0704	-0.4	-2.8	8.5	$C_{12}H_9$
171.0260	3.86	171.0268	-0.8	-5.0	8.5	$C_{11}H_7S$
181.0649	3.39	181.0653	-0.4	-2.4	9.5	$C_{13}H_9O$
184.0354	7.08	184.0347	0.7	4.0	9.0	$C_{12}H_8S$
185.0429	27.26	185.0425	0.4	2.2	8.5	$C_{12}H_9S$
186.0488	6.84	186.0503	-1.5	-8.2	8.0	$C_{12}H_{10}S$
213.0372	100.00	213.0374	-0.2	-1.0	9.5	C ₁₃ H ₉ OS
214.0447	79.53	214.0452	-0.5	-2.5	9.0	$C_{13}H_{10}OS$

5. 2.6-Dibenzalcyclohexanone,	Yellow	solid
-------------------------------	--------	-------

Elemental Composition Report

Multiple Mass Analysis: 74 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

327 formula(e) evaluated with 64 results within limits (up to 50 closest results for each mass)

Minimum:	1.00				0.0	
Maximum:	100.00		4.0	5.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
27.0235	7.47	27.0235	0.0	0.9	1.5	C_2H_3
29.0388	5.21	29.0391	-0.3	-11.2	0.5	C_2H_5
39.0236	9.19	39.0235	0.1	3.2	2.5	C_3H_3
41.0392	9.58	41.0391	0.1	1.8	1.5	C_3H_5
42.0456	1.37	42.0470	-1.4	-32.1	1.0	C_3H_6
43.0547	8.82	43.0548	-0.1	-1.7	0.5	C_3H_7
50.0142	1.40	50.0157	-1.5	-29.0	4.0	C_4H_2
51.0235	9.25	51.0235	0.0	0.5	3.5	C_4H_3
52.0310	2.10	52.0313	-0.3	-5.8	3.0	C_4H_4
53.0400	1.88	53.0391	0.9	16.5	2.5	C_4H_5
55.0185	1.98	55.0184	0.1	2.0	2.5	C_3H_3O
55.0558	4.74	55.0548	1.0	18.6	1.5	C_4H_7
56.0619	1.20	56.0626	-0.7	-12.5	1.0	C_4H_8
57.0704	12.84	57.0704	0.0	-0.4	0.5	C_4H_9
63.0238	5.56	63.0235	0.3	5.2	4.5	C_5H_3
65.0393	6.13	65.0391	0.2	2.7	3.5	C_5H_5
67.0560	1.25	67.0548	1.2	18.3	2.5	C_5H_7
69.0705	3.00	69.0704	0.1	1.1	1.5	C_5H_9
71.0863	4.67	71.0861	0.2	3.2	0.5	C_5H_{11}
74.0180	1.06	74.0157	2.3	31.7	6.0	C_6H_2

75.0254	2.94	75.0235	1.9	25.7	5.5	C_6H_3
76.0309	2.76	76.0313	-0.4	-5.3	5.0	C_6H_4
77.0393	12.79	77.0391	0.2	2.3	4.5	C_6H_5
78.0468	5.84	78.0470	-0.2	-1.9	4.0	C_6H_6
79.0549	2.28	79.0548	0.1	1.6	3.5	C_6H_7
85.1026	2.92	85.1017	0.9	10.3	0.5	C_6H_{13}
89.0388	6.35	89.0391	-0.3	-3.7	5.5	C_7H_5
91.0547	15.31	91.0548	-0.1	-0.8	4.5	C_7H_7
92.0590	1.28	92.0626	-3.6	-39.1	4.0	C_7H_8
99.1202	1.04	99.1174	2.8	28.5	0.5	C_7H_{15}
101.0397	1.18	101.0391	0.6	5.7	6.5	C_8H_5
102.0470	7.37	102.0470	0.0	0.5	6.0	C_8H_6
103.0559	2.91	103.0548	1.1	10.9	5.5	C_8H_7
105.0367	5.69	105.0340	2.7	25.3	5.5	C_7H_5O
115.0551	35.47	115.0548	0.3	2.8	6.5	C_9H_7
116.0602	9.28	116.0626	-2.4	-20.7	6.0	C_9H_8
127.0559	6.71	127.0548	1.1	8.9	7.5	$C_{10}H_7$
128.0625	15.99	128.0626	-0.1	-0.8	7.0	$C_{10}H_8$
129.0675	13.10	129.0704	-2.9	-22.7	6.5	$C_{10}H_9$
139.0560	1.17	139.0548	1.2	8.8	8.5	$C_{11}H_7$
141.0714	8.01	141.0704	1.0	6.9	7.5	$C_{11}H_9$
142.0784	2.32	142.0783	0.1	1.1	7.0	$C_{11}H_{10}$
152.0629	3.02	152.0626	0.3	2.0	9.0	$C_{12}H_8$
153.0701	4.22	153.0704	-0.3	-2.1	8.5	$C_{12}H_9$
154.0765	1.54	154.0783	-1.8	-11.4	8.0	$C_{12}H_{10}$
155.0867	2.82	155.0861	0.6	4.0	7.5	$C_{12}H_{11}$
165.0719	3.84	165.0704	1.5	8.9	9.5	$C_{13}H_9$
167.0865	3.56	167.0861	0.4	2.5	8.5	$C_{13}H_{11}$
168.0923	3.69	168.0939	-1.6	-9.5	8.0	$C_{13}H_{12}$
169.1005	5.25	169.1017	-1.2	-7.2	7.5	$C_{13}H_{13}$
178.0807	1.12	178.0783	2.4	13.8	10.0	$C_{14}H_{10}$
181.0679	1.72	181.0653	2.6	14.1	9.5	$C_{13}H_9O$
183.0820	5.24	183.0810	1.0	5.5	8.5	$C_{13}H_{11}O$
203.0871	7.46	203.0861	1.0	5.0	11.5	$C_{16}H_{11}$
204.0914	2.63	204.0939	-2.5	-12.3	11.0	$C_{16}H_{12}$
205.1010	2.00	205.1017	-0.7	-3.5	10.5	$C_{16}H_{13}$
215.0858	5.51	215.0861	-0.3	-1.3	12.5	$C_{17}H_{11}$
216.0936	2.87	216.0939	-0.3	-1.4	12.0	$C_{17}H_{12}$
217.1031	18.22	217.1017	1.4	6.3	11.5	$C_{17}H_{13}$
218.1095	9.65	218.1096	-0.1	-0.2	11.0	$C_{17}H_{14}$
231.1143	3.08	231.1174	-3.1	-13.3	11.5	$C_{18}H_{15}$
245.1305	5.09	245.1330	-2.5	-10.3	11.5	$C_{19}H_{17}$
273.1284	100.00	273.1279	0.5	1.7	12.5	C ₂₀ H ₁₇ O
274.1354	81.43	274.1358	-0.4	-1.3	12.0	$C_{20}H_{18}O$

6. (*E*)-1-phenyloct-1-en-3-one, White solid.

Elemental Composition Report

Multiple Mass Analysis: 30 mass(es) processed - displaying only valid results Tolerance = 4.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions						
201 formula(e) evaluated with 18 results within limits (up to 50 closest results for each mass)						
Minimum:	1.00				0.0	
Maximum:	100.00		4.0	5.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Formula
26.0166	1.06	26.0157	0.9	36.5	2.0	C_2H_2
27.0228	8.61	27.0235	-0.7	-25.0	1.5	C_2H_3
29.0384	16.30	29.0391	-0.7	-25.0	0.5	C_2H_5
51.0232	2.38	51.0235	-0.3	-5.4	3.5	C_4H_3
57.0328	7.83	57.0340	-1.2	-21.7	1.5	C ₃ H ₅ O
63.0222	2.99	63.0235	-1.3	-20.2	4.5	C_5H_3
75.0234	1.19	75.0235	-0.1	-1.0	5.5	C_6H_3
78.0451	1.27	78.0470	-1.9	-23.7	4.0	C_6H_6
89.0403	4.47	89.0391	1.2	13.2	5.5	C_7H_5
102.0462	3.18	102.0470	-0.8	-7.4	6.0	C_8H_6
115.0530	69.15	115.0548	-1.8	-15.4	6.5	C_9H_7
116.0600	14.38	116.0626	-2.6	-22.4	6.0	C_9H_8
117.0686	100.00	117.0704	-1.8	-15.6	5.5	C ₉ H ₉
131.0842	1.05	131.0861	-1.9	-14.3	5.5	$C_{10}H_{11}$
145.0634	81.61	145.0653	-1.9	-13.4	6.5	$C_{10}H_9O$
159.0777	1.24	159.0810	-3.3	-20.7	6.5	$C_{11}H_{11}O$
173.0970	16.57	173.0966	0.4	2.1	6.5	$C_{12}H_{13}O$
174.1024	47.46	174.1045	-2.1	-11.9	6.0	$C_{12}H_{14}O$