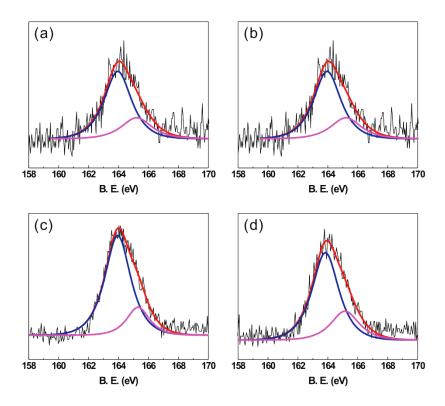
Supplementary Information

Pure thiophene-sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties

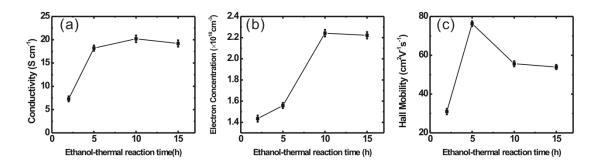
Zegao Wang,^a Pingjian Li,^{a*} Yuanfu Chen,^{a*} Jiarui He,^a Wanli Zhang,^a Oliver G.

Schmidt^{b,c} and Yanrong Li^a

^aState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China


^bInstitute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.

^cCenter for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.


*To whom correspondence should be addressed, <u>yfchen@uestc.edu.cn</u>, <u>lipingjian@uestc.edu.cn</u>

Method	Thiophene-S Content	Oxide-S Content	Ref	
Thermal	0.96 wt%	0.56 wt%	[1]	
Annealing	1.06 wt%	0.23 wt%		
Thermal	1.2 at%	0.6 at%	[2]	
Annealing	1.3 at%	0.4 at%		
Thermal	1.0 at%	5 6 at0/	[2]	
Annealing	1.0 at%	5.6 at%	[3]	
This study	1.2 at%	below the detection limit	This study	

TABLE S1. The S content of S-doped rGO synthesized by different methods.

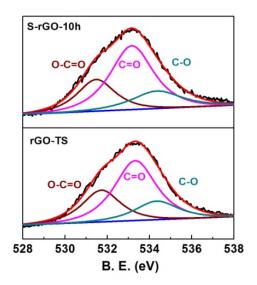


Figure S1. The high resolution S2p XPS spectra of S-doped rGO synthesized at (a) 2 h, (b) 5 h, (c)10 h and (d) 15 h; the ethanol-thermal reaction time is 180 °C.

Figure S2. (a) Conductivity, (b) electron concentrations and (c) Hall mobilities of S-doped rGO as a function of ethanol-thermal time at 180 °C. The values are mean and standard deviation (SD) for 5 different samples.

Figure S2a shows the conductivity of S-doped rGO as a function of ethanol reaction time t_{etr} , and the S-rGO-10h has the highest value. This variation can be explained by the effect of t_{etr} on the electron concentration and mobility of S-doped rGO. From Figure S2b, we find that the electron concentration firstly increases and then decreases with t_{etr} , and the variation is consistent with the S content shown in Figure 3a. Thus, we can conclude that the electron concentration increases with the S content, indicating that the S doping is n-type doping. Figure S2c shows the Hall mobility as a function of t_{etr} . Combined with Figure 3a, 3b and S2c, we reveal that firstly, when t_{etr} = 2-5 h, the mobility increases, which is mainly due to the decrease in O content; secondly, when t_{etr} = 5-10 h, the mobility decreases owing to the increase of defects caused by the increase in the S content; thirdly, for t_{etr} = 10-15 h, despite the S content decrease, the mobility still continues to decrease, which is due to an increasing number of defects caused by the breakage of C-S bonds and removal of S atoms.

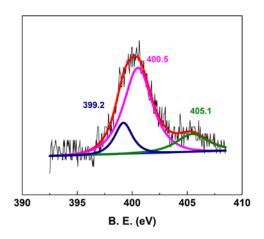


Figure S3. High resolution O1s XPS spectra of S-rGO-10 h and rGO-TS. The peaks at around 531.5, 533.2 and 534.4 eV peaks correspond to O–C=O, C=O and C–O groups, respectively.

TABLE S2. Contents of O species (O-C=O, C=O, C-O and Total O) in S-rGO-10 h

and rGO-TS.	
-------------	--

	O-C=O (at%)	C=O (at%)	C-O (at%)	Total O (at%)
S-rGO-10h	2.7	5.7	1.8	10.2
rGO-TS	2.7	5.8	1.9	10.4

Figure S4. High resolution N1s XPS spectra of N-doped rGO synthesized by the hydrazine reduction. The peaks at around 399.2, 400.5, 405.1 eV peaks correspond to the pyridine-N, pyrrolic-N and oxidized N groups, respectively.

Supplementary References

- 1. Z. Yang, Z. Yao, G. F. Li, G. Y. Fang, H. G. Nie, Z. Liu, X. M. Zhou, X. A. Chen and S. M. Huang, *ACS Nano*, 2012, **6**, 205-211.
- 2. S. B. Yang, L. J. Zhi, K. Tang, X. L. Feng, J. Maier and K. Mullen, *Adv. Funct. Mater.*, 2012, **22**, 3634-3640.
- 3. H. L. Poh, P. Simek, Z. Sofer and M. Pumera, ACS Nano, 2013, 7, 5262–5272.