Supplementary Information

Silicon Nanowires-Reduced Graphene Oxide Composite as a High-Performance Lithium Ion Battery Anode Material

Jian-Guo Ren,^a ChundongWang,^a Qi-Hui Wu,^{*b} Xiang Liu,^c Yang Yang,^a Lifang He,^a and Wenjun Zhang^{*a}

^a Centre of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China. E-mail: apwjzh@cityu.edu.hk; Fax: 852-3442-0538; Tel: 852-3442-7433.

^b Department of Chemistry, College of Chemistry and Life Science, Quanzhou Normal University,
Quanzhou 362000, P. R. China. E-mail: qhwu@qztc.edu.cn.

^c Institute of Advanced Materials, Nanjing University of Technology, Nanjing 210009, P. R. China.

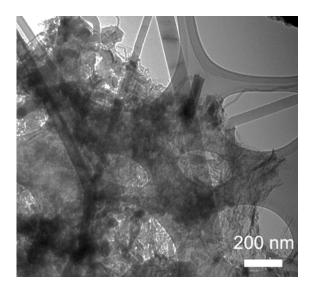


Figure S1. TEM image of the CVD-synthesized Si NWs-rGO composite. The well dispersed Si NWs were sandwiched between rGO sheets, achieving the lateral contact between NW and rGO sheet.

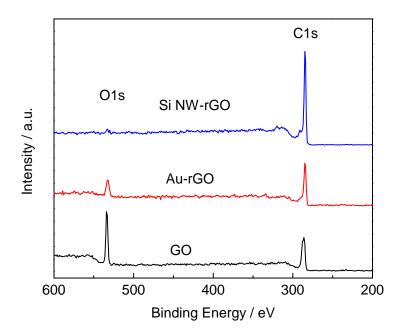


Figure S2. XPS survey spectra of the GO, Au-rGO, and Si NWs-rGO samples. C/O ratios for GO, Au-rGO, and Si NWs-rGO were calculated to be 2.39, 4.05, and 25.04, respectively.

Figure S3. Rate capabilities of Si NWs-rGO composite electrode ($1C = 3.6 \text{ A g}^{-1}$).

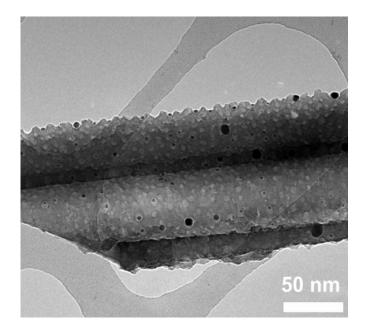


Fig S4. TEM image of a Si NW after 100 cycles at C/3 rate. The Si NW was transformed to a porous structure, and its diameter increased to about 120 nm.