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S1.3 – Functionalization of Au Nanoparticles:  

 To functionalize the toluene based AuNPs with FMP, 50 mL of the 5.8 nm AuDDA/DDAB particles were 

quenched with 50 mL of methanol to induce their precipitation. After allowing the aggregates to sediment (~1 hr 

after flocculation), the clear supernatant of toluene/methanol containing excess DDA and DDAB surfactant was 

removed. The particles were briefly dried over argon flow (to remove all traces of methanol) and then immediately 

redispersed in 50 mL of toluene. To this mixture, a concentrated aliquot of FMP ligand dissolved in toluene was 

immediately added (0.4 equivalents of ligand per gold atom, ~36 mg). The ligands were allowed to age overnight, 

allowing the formation of a high quality SAM, and then the NPs were precipitated with ~50 mL of acetone (this 

precipitation can be facilitated by the addition of tetramethylammonium hydroxide, TMAOH, base if necessary). 

After allowing the aggregates to sediment, the solids were washed three times with 20 mL of dichloromethane (to 

remove remaining surfactants and excess FMP ligand). The final product was briefly dried using a flow of argon 

gas (to remove any trace of acetone/DCM) and then dissolved in DI water adjusted to pH~9 for film formation 

experiments and pH~10.5 for long term storage by addition of base (tetramethylammonium hydroxide, TMAOH). 

To remove any larger aggregates that might have formed during the purification process, the aqueous solution was 

passed through a 200 nm syringe filter.   

S1.4- Formation of NP Films at Droplet Interfaces:  

 In our experiments, the pH of the AuFMP NP solution was adjusted to ~9. The concentration of NPs was ~60 

mM in the terms of gold atoms. To illustrate the temperature driven film formation, a droplet of 5 uL AuFMP NPs 

solution was immersed in the mixture of toluene and dichloromethane (3:1 v:v) in a vial. The organic phase was 

then cooled down by placing the vial into a acetone/dry ice bath. After 3 ~5 minutes, the NPs migrated to the 

interface between water and organic solvent and formed the metalized film. Simultaneously, water inside the 

droplets began to freeze. Next, the dry ice bath was removed and the frozen droplet began to melt, revealing a 

shiny, metallic film. 

 

 NPs functionalized with FMP were kinetically stable in aqueous solutions with a pH above 9.5. When the pH 

was commensurate with the pKa prior to the freeze-thaw cycle (e.g. pH=9.5 at 25oC), any significant excess NPs 

for which there was not sufficient interfacial area to occupy (
2

Avagadro[NP] π N Interfacial AreadropletV r  ) 

aggregated in solution during the freeze-thaw cycle. This aggregation was observed as a blue-shift in the NPs' 

surface plasmon resonance recorded by UV-Vis spectroscopy (Figure S2a). On the other hand, when the pH≫pKa 

(e.g., pH~11) the NPs will remain stable in solution regardless of changes in temperature, as indicated by the lack 

of a blue-shift in the NPs' surface plasmon resonance following a freeze-thaw cycle (Figure S2b).  

 

Figure S1 (a) The UV-Vis spectra of FMP nanoparticle solution before (black line) and after (red line) a freeze-thaw cycle which 

began at pH = 9.5 when at 25 oC. (b) The UV-Vis spectra of FMP nanoparticle solution before (black line) and after (red line) a 

freeze-thaw cycle which began at pH = 11 when at 25 oC. (c) The TEM image of FMP functionalized nanoparticles 

S1.5 – Wet Stamping of NP Films:  

1 wt% agarose film: 0.3 g agarose was dispersed in 29.7 g DI water. The agarose suspension was heated in a 
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microwave for ~1 min. The clear solution was then poured onto a pre-heated glass slide. The other pre-heated glass 

slide was placed on top of the gel. The gel was then allowed to cool down, producing and agarose film for 

stamping experiments. 

 

3 wt% agarose stamps: 1.5 g agarose was dispersed in 48.5 g DI water. The suspension was heated in a microwave 

for about 1.5 min and was then cast over a photolithographically-prepared polydimethylsiloxane (PDMS) master 

presenting the “negative” of the desired microfeatures on its surfaces. The agarose-covered PDMS was then placed 

under vacuum for about 2 min to remove any air bubbles. After the agarose layer cooled down and solidified, it 

was gently peeled-off the master and cut into smaller stamps.  

 

NPs Stamping: Aagarose stamps were soaked into a ~60 mM AuFMP nanoparticle solution overnight. After 

blotting off any surface water with a tissue paper, the stamps was placed onto the agarose substrate and left there 

for 1 hr under humid (100% RH) atmosphere. Finally, the stamp was removed and the gold NP films were formed 

on the surface by decreasing the temperature of the agarose film as described in the main text. 

 

S2 Electrostatic Modeling & Interfacial Energies 

S2.1 – Describing the Behavior of Electrostatic Potential:  

For the experimental conditions described in this work, the electrostatic potential,  , outside of the particles is 

well described by the full Poisson Boltzmann (PB) equation simplified for monovalent electrolytes. 

 2
2

o B

2e e
sinh

ε ε k
sc

T


 

   
 

 (1) 

The introduction of the dimensionless electrostatic potential, Be k T  , results in the equation below 

characterized by a single parameter 2 . 

    
2

2 2

o B

2e
sinh sinh

ε εk
sc

T
       (2) 

Here,   1 21 2
o B2e ε εksc T

   is the Debeye screening length which characterizes the behavior of the system 

and is approximately the length scale over which the potential decays away from charged surfaces.  The PB 

equation (2) can also be used to describe the potential decay within the alkane SAM, although one must account 

for the differences in dielectric and ionic environment ( ε 2 for an alkane SAM). Within the metallic nanoparticle 

core, the potential must be constant – this can be approximated  by assuming the 'dielectric constant' of the metal 

is much greater than the dielectric constant of the surrounding environment ( Au waterε ε  ) such that the PB 

equation simplifies to the Laplace equation, 
2 0  , within the nanoparticle core. 

S2.2 – Describing the Charged Particle Interface: 

In order to accurately describe the experimental system, the boundary conditions for the nanoparticle-solvent 

interface must incorporate as much experimental detail as possible. While purely analytical solutions exist for 

'constant-potential' or 'constant-charge' boundary conditions, these assumptions fail to capture the complex 

equilibrium between the SAM and surrounding counterions and cannot be applied to this particular system. 

Consequently, we turn to what is known as the 'charge-regulation' boundary condition which is typically solved 

numerically due to the coupling of non-linear differential equations. In this method, the charge density,  , at the 
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interface of the SAM and the solvent is described by the grafting density of all chemical moieties,  , multiplied 

by the fraction,  , of those groups which are in a charged state based on the local chemical and electrical 

equilibrium at the interface. 

 

For the 'charge regulating' boundary condition, the charge density for a flat SAM is described as ez   , where 

e is the elementary charge, z is the valence of the charged moieties and   is the density of bound moieties on the 

surface 4.47o  ligands/nm for a flat <111> gold surface). Transforming the equation into a non-dimensional form 

yields: 

 

o B

e

εε k

z

T
    (3)  

To extend this definition of charge density to a spherical particle, one must take into account the effective 

“dilution” of charge density on the surface by the curvature of the particle. The apparent charge density at the 

SAM-solvent interface is described as  22
o NP NPr r l    , where o  is the ligand density on a flat surface, rNP 

is the radius of the nanoparticle core, and l is the thickness of the SAM. 

 

At any given time, the surface of the charged NP is in electro-chemical equilibrium with the surrounding medium. 

The charge regulation boundary condition accounts for this and defines the actual charge density at the interface to 

be a fraction,  , of the total possible charge density. For a moiety A-H+ in the presence of B+ counter-ions, this 

fraction can be defined as 

 

1

1

s s

A A
s ss s s s
AH ABTotal AH ABA s s

A A

C C

C CC C C C
C C

  



 

  
   

 (4) 

where 
s

A
C  is the concentration of deprotonated A-H+ at the surface, 

s
TotalC is the total concentration of ligands on the 

surface, 
s
AHC is the concentration of deprotonated A-H+ at the surface, and 

s
ABC is the concentration of A- at the 

surface that has absorbed the counterion, B+. The adsorption of protons and counterions onto the charged surface 

can be related to the bulk concentrations through the following equations derived through a series of mass 

balances: 

  
a

exp
K

os
AH H
s

A

CC

C




   (5) 

 d

B

ΔG
exp

k

s
oAB

s B
A

C
X

C T




 
  

 
 (6) 

where 
o

H
C   is the bulk concentration of H+, aK  is the disassociation coefficient of the acid, 

o

B
X   is the mole 

fraction of B+ in the bulk solution, and dΔG is the Gibb's free energy for the disassociation of the A+B- complex. 

 

Combining the original equation for charge density, (3), with the corrections for curvature and chemical 

equilibrium, (4), yields equation (7) which can be applied at the SAM-solvent interface. 

   

2

2
o B d

a B

e 1

εε k ΔG1 exp expK k

o NP

o
oNP H
B

z r

T r l C
X T


 






             

 (7) 
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2 2 2

2 2 2 2

4A 1
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3 4 2
c c c

vdW
c

r r r
U

d r d d

  
         

 (10) 

where A is the Hamaker coefficient for the pertinent media (in this case, gold across water A ≈ 4×10-20J), cr is the 

radius of the nanoparticle core, and d is the distance between the centers of the two nanoparticles (see Figure S2b).  

 

The total energy of particles’ interaction can be described as a sum: 

 total es vdWU U U   (11)  

As can be seen in Figure 2a of the main text, the total interaction energy is negative (i.e. attractive) at very small 

distances but there is an energy barrier due to the electrostatic interactions that prevents the nanoparticles from 

approaching one another and aggregating. As the temperature lowers, and consequently the pH of the solution 

lowers, the energy barrier preventing aggregation is weakened and at a critical temperature, Tc, the nanoparticles 

begin to aggregate and form an insoluble film at the interface of the two liquid phases. 

 

S2.5 – Free Energy of Interfacial Adsorption: 

The free energy associated with a NP adsorbing onto a liquid-liquid interface has been previously discussed at 

length by Stebe and co-workers26. The gain in free energy comes from the reduction of interfacial area (the cross 

section of the NP) between two immiscible solvents which have a high surface tension. A simple free energy 

balance of the surfaces coupled with the Young-Dupré equation results in the following equation: 

  22
12=- π 1-cosads NPF r   (12) 

where γ12 is the surface tension between the two fluid phases, rNP is the radius of the NP and θ is the contact angle 

between the three-phase interface (solvent 1, solvent 2, and the NP surface). 

 

In the current FMP NP system, measuring the three-phase contact angle can be accomplished by measuring the 

contact angle of sessile droplets on FMP SAMs formed on flat Au surfaces. Gold slides were prepared by 

thermally evaporating a 2 nm tungsten adhesion layer and 50 nm of 99.999% gold at 1Å/s onto glass slides. The 

slides were then placed into a 20 mM MeOH solution of FMP molecules and allowed to incubate for at least 24 

hours. To prepare the SAM for contact angle measurements, the slide was first rinsed with MeOH and then acetone 

and blown dry with pressurized argon gas. At this stage, the slide was placed in a 2mM buffer (pH 4  phthalate 

buffer; pH 7 phosphate buffer; pH 10 carbonate buffer) solution at the pH for which the measurement were to be 

performed. After equilibrating for 5 minutes, the slide was removed from the buffer solution and excess water was 

blown off of the slide using pressurized argon; the slide was then immediately placed into the a solution of interest 

(here a toluene/DCM mixture). A Sessle droplet of the 2 mM buffer solution was placed on the SAM and contact 

angle was measured. Multiple contact angles (~60) were taken for different droplets at a given pH. In between 

different pH measurements, the slide was returned to the MeOH FMP solution and allowed to re-equilibrate for at 

least 6 hours – this ensures that the SAMs are returned to their original state.  

 

pH  Buffer/Organic 

Contact Angle 

Buffer/Air 

Contact Angle 

4  141.23o ± 2.8o  75.6o ± 3.1o 

7  140.55o ± 3.0o  73.85o ± 2.3o 
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10  128.48o ± 2.3o  67.95o ± 3.3o 

 

S3 Dependence between pH and temperature 

The pH of aqueous solutions is influenced by atmospheric gasses which dissolve into water (e.g., CO2). Although 

the concentration of CO2 in the air is only ~0.03%, the pH of the DI water can be significantly lowered when this 

minute fraction of CO2 dissolves in water. In principle, the solubility of CO2 in water is a decreasing function of 

temperature. It depends on: the CO2(aq) + H2O ↔ H2CO3 equilibrium and can be quantified by the Henry’s law. 

Although [CO2(aq)] is larger than [H2CO3], [H2CO3] still can be substituted for all the dissolved CO2(aq). Based 

on the equilibriums, mass conversation and electric neutrality, pH can be calculated by the following equations: 

 2

2

CO
o

CO

c
K =

P
 (13)  

Where the PCO2 is the partial pressure of CO2 in air, Ko is the solubility in mol L-1 atm-1, and c is the concentration 

of CO2 dissolved in the water: 

  
2

- 2-
CO 2 3 3 3c = H CO + HCO + CO        (14) 

H2CO3 dissociates in water as CO2(aq) + H2O ↔ HCO3 
- + H+ and HCO3

-↔CO3
2- + H+ such that the 

corresponding equilibrium coefficients are: 
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2 3

HCO H
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H CO
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 (15) 

 
2- +
3

2 -
3

CO H
K =

HCO

      
  

 (16) 

Based on the electric neutrality of the solution,  

+ + - 2- -
3 3H + TMA = HCO +2 CO + OH                    (17) 

Where the ሾܶܣܯାሿ comes from the base that is added to the solution to adjust pH. 

 - +
wK = OH H        (18)  

Where ܭ௪	is the dissociation constant of water. 

Moreover, all the dissociation constants here are functions of temperature and can be expressed as described by 

Harned and co-authors35:  

 

 
o

2622.38
pK =- -0.0178471 +15.5873T

T
 (20) 

 
1

3404.71
pK = -0.032786 -14.8425T

T
 (21) 
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2

2902.39
pK = +0.02379 -6.4980T

T
 (22) 

    w

13847.26
ln K =148.9802- -23.6521ln T

T
 (23) 

 

 

Finally, by solving all the equations above for the pH at specific temperatures, we receive a trend 

that agrees with the experimental results as show in Figure 1b in the main text. 
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