Electronic Supporting Information (ESI)

Electrospun Na₃V₂(PO₄)₃/C Nanofibers as Stable Cathode Materials for Sodium-Ion Batteries

By Jun Liu, Kun Tang, Kepeng Song, Peter A. van Aken, Yan Yu* and Joachim Maier

[*]	Pi	rof.	Dr.Ya	n		Yu
CAS	Key Laboratory of M	laterials for	Energy Conversion,	, School	of Chemis	try and
Mate	rials Science, Univers	sity of Scie	nce and Technology	y of Chi	na, Hefei,	China.
E-mail: yanyumse@ustc.edu.cn						
Dr. Jun Liu ^[+] , Dr. Kun Tang ^[+] , Prof. Dr. Yan Yu and Prof. Dr. Joachim Maier						
Max	Planck Institute for	Solid State	Research, Heisenbe	ergstr. 1,	Stuttgart,	70569,
Germany						
Mr. Kepeng Song, Prof. Dr. P. A. van Aken						
Max	Planck Institute for	Intelligent	Systems, Heisenber	rgstr. 3,	Stuttgart,	70569,
Gern	nany					

^[+] These authors contributed equally to this work.

Experimental methods

Na₃V₂(PO₄)₃/C nanofibers fabrication

NaH₂PO₄ (3.75 mmol), NH₄VO₃ (2.5 mmol), citric acid (6.25 mmol) and 0.6 g polyethylene oxide (PEO, Mw = 600,000) were dissolved into 30 mL distiller water. After vigorous stirring for 12 h, the homogenous precursor solution was poured into a syringe connected to a plastic needle, while a copper wire attached to a high-voltage generator was placed in the solution. A direct current electric field of 20 kV was applied between the needle and the Al foil target used for collection. The as-collected electrospun fibers were calcined at 500 °C for 2 h and 800 °C for 10 h under Ar atmosphere to obtain Na₃V₂(PO₄)₃/C hierarchical nanofibers.

Materials characterization

The collected products were characterized by an X-ray diffractometry (XRD) on a Rigaku-DMax 2400 diffractometer equipped with the graphite monochromatized Cu K α radiation flux at a scanning rate of 0.02°s⁻¹. Scanning electron microscopy (SEM) analysis was carried using a Zeiss Gemini DSM 982 scanning electron microscope. The thermogravimetric analysis (TGA) was performed from room temperature to 800 °C at a ramp rate of 20 °C/min with an air flow rate of 20 mL/min using Q50 TGA. The structure of these Na₃V₂(PO₄)₃/C hierarchical nanofibers was investigated by means of transmission electron microscopy (TEM, JEOL 4000FX).

Electrochemical test

The electrochemical performances of the as-prepared products were measured by using two-electrode Swagelok-type cells. For the preparation of the working electrode, a mixture of Na₃V₂(PO₄)₃/C hierarchical nanofibers, carbon black, and polyvinylidene fluoride (PVDF) in the weight ratio of 85:5:10 was ground in a mortar with *N*-methy1-2-pyrrolidone (NMP) as solvent to make slurry. For assembling Naion batteries, a Na foil was utilized as counter electrode and glass fiber (GF/D) from Whatman was used as a separator. The electrolyte was 1 M NaClO₄ in propylene carbonate (PC). The charge/discharge curves and cycling capacity were evaluated by an Arbin MSTAT battery test system in the cut-off voltages of 2.5 and 3.8 V. Cyclic voltammetry (CV) was performed using a VoltaLab 80 electrochemical workstation.