Electronic Supplementary Information

Multifunctional Co_{0.85}Se/Graphene Hybrid Nanosheets: Controlled Synthesis and Enhanced Performances for Oxygen Reduction Reaction and Decomposition of Hydrazine Hydrate

Lin-fei Zhang, and Chun-yang Zhang*

Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China

Fax: (+86) 755-86392299

Tel.:(+86) 755-86392211

E-mail: zhangcy@siat.ac.cn

Figure S1. TEM image of GO sheets (A) and SEM image of Co_{0.85}Se/graphene nanocomposites

(B).

Figure S2. Tapping-mode AFM image of ultrathin Co_{0.85}Se/graphene nanosheets, and the height

along the line (lines 1, 2 and 3) shown in the AFM image.

Figure S3. EDX analysis of $Co_{0.85}$ Se/graphene hybrid nanosheets. The molar ratio of Co to Se

atom is 0.83:1, close to the stoichiometric ratio of $Co_{0.85}$ Se.

Figure S4. Nitrogen adsorption-desorption isotherms (A) and the pore size distribution (B) of

Co_{0.85}Se/graphene hybrids.

Figure S5. N_2 adsorption-desorption isotherm of the physical mixture of GO and $Co_{0.85}$ Se nanorod.

Figure S6. TEM and HRTEM images of the products obtained at 180 °C in ethylene glycol at

reaction time of 3 h.

Figure S7. (A) TEM images of pure $Co_{0.85}Se$ nanorods without the addition of GO. (B-D) TEM images of Co_xSe_y /graphene when the molar ratio of *n* (Co atom): *n* (Se atom) is 1.2 : 1 (B), 1 : 1 (C) and 1 : 2 (D).

Figure S8. TEM image (A) and XRD pattern (B) of $Co_x Se_y$ products obtained without the addition of GO.

Figure S9. EDX analysis of $Co_x Se_y/graphene$ when the molar ratio of *n* (Co atom): *n* (Se atom) is

1.2 : 1 (A), 1 : 1 (B) and 1 : 2 (C).

Figure S10. TEM images of the products obtained at 180 $^{\circ}$ C for 15 h in the presence of solvents of deionzed water (A-C), ethanediamine (D), ethanol (E). (F) HRTEM image of the products obtained at 180 $^{\circ}$ C for 15 h with ethanol as the solvent.

Figure S11. CV curves of Co_{0.85}Se/graphene hybrids on a glass carbon electrode in O₂-saturated

0.1 M KOH solution at a scanning rate of 50 mV·s⁻¹.

Figure S12. (A) RDE curves for GO sheets, $Co_{0.85}Se$ nanorod, $Co_{0.85}Se$ /graphene, and (B) physical mixture of GO and $Co_{0.85}Se$ nanorod on glassy carbon electrodes in O₂-saturated 0.1 M KOH solution at the potential ranging from -0.8 to 0 V with a scan rate of 10 mV·s⁻¹. The electrode rotation rate is 1600 rpm.

Figure S13. (A) Variance of the absorption spectra with hydrazone concentration. (B) The linear

relationship between absorbance value and hydrazone concentration.

Figure S14. UV-vis absorption spectra show the process of decomposition of hydrazine hydrate catalyzed by (A) 50 mg of GO sheets and (B) 50 mg of the mixture of $Co_{0.85}$ Se nanorod (45 mg) and GO (5 mg) at room temperature.