Electronic Supporting Information

Improved Electron Transfer and Plasmonic Effect in Dye-sensitized Solar Cells with Bi-functional Nb-doped TiO₂/Ag Ternary Nanostructures

Jung Tae Park, Won Seok Chi, Harim Jeon, Jong Hak Kim*

Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. Fax: +82-2-312-6401; Tel: +82-2-2123-7799;

E-mail:jonghak@yonsei.ac.kr

Fig. S1. Magnified EF-TEM micrograph of the bi-fuctional Nb-doped TiO_2/Ag ternary nanostructure.

Fig. S2. UV-visible spectra of N719 dye loading on TiO_2 , Nb-doped TiO_2 and Nb-doped TiO_2/Ag ternary nanostructure after 1 and 7 days.

Fig. S3. EIS curves of DSSC with TiO_2 , Nb-doped TiO_2 , and Nb-doped TiO_2/Ag ternary nanostructure photoanode using a solid PEBII electrolyte measured at -0.65 V bias voltage under dark condition (100 kHz ~ 10 mHz). The fitting curves were obtained using Z-Plot software.

Fig. S4. Optical absorption spectra of the TiO₂ and Nb-doped TiO₂ photoanode.

Fig. S5. J-V curves of DSSCs fabricated using pristine TiO₂, Nb-doped TiO₂, and the Nb-doped TiO₂/Ag ternary nanostructure at 100 mW/cm² upon using (a) a solid PEBII liquid electrolyte and electrolyte consisting (b) a of 1-butyl-3-methylimidazolium iodide, guanidinium I₂, thiocyanate, and 4-tert-butylpyridine in a mixture of acetonitrile and valeronitrile. The thickness of photoanode is approximately 14 µm.

		1	11 2	•
Photoanode	V _{oc} (V)	J_{sc} (mA/cm ²)	FF	η (%)
TiO ₂	0.78	12.4	0.53	5.1
Nb-doped TiO ₂	0.83	13.8	0.54	6.1
Nb-doped TiO ₂ /Ag	0.82	16.5	0.53	7.2

Table S1. Photovoltaic properties of three types of DSSCs fabricated using TiO₂, Nb-doped TiO₂, and Nb-doped TiO₂/Ag ternary nanostructure with a solid PEBII electrolyte at 100 mW/cm². The thickness of photoanode is approximately 14 μ m.

Table S2. Photovoltaic properties of three types of DSSCs fabricated using TiO₂, Nb-doped TiO₂, and Nb-doped TiO₂/Ag ternary nanostructure with a liquid electrolyte of 1-butyl-3-methylimidazolium iodide, I₂, guanidinium thiocyanate, and 4-tert-butylpyridine in a mixture of acetonitrile and valeronitrile at 100 mW/cm². The thickness of photoanode is approximately 14 μ m.

Photoanode	V _{oc} (V)	J_{sc} (mA/cm ²)	FF	η (%)
TiO ₂	0.66	17.3	0.63	7.3
Nb-doped TiO ₂	0.71	18.2	0.64	8.2
Nb-doped TiO ₂ /Ag	0.71	18.9	0.65	8.7