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1. Protocol for the shell growth synthesis 
Silanization process 
 
In a first step we immersed the wires in acid to take off surface potassium. After three 
centrifugation/water wash cycles the wires were redistributed in H2O. A 1000:1:10 ratio of 
H2O, acidic acid and (Aminopropyl)triethoxysilane was mixed and left to react for 5 minutes. 
After adding the nanowires we let the mixture react for another few minutes before washing 
and resuspending the aminosilane coated wires in H2O. For positive charging of the outer 
layer of AMPTS, acid was added. 
 
Adaption of Caruso process for functionalization 
 
As an alternative method to explore the formation of gold shells we used 
Poly(diallyldimethylammonium chloride) (PDADMAC) obtained from Aldrich. A single 
layer polyelectrolyte film of PDADMAC was deposited on the KNbO3 nanowires. A volume 
of 0.5 ml of a 1 mg/ml aqueous solution containing 0.5 M NaCl was added to 0,5 ml of 
nanowires dispersed in H2O. The dispersion was stirred for 20 min to allow homogeneuos 
adsorption on the wires. The excess polyelectrolyte was removed by repeated 
centifugation/wash cycles. 
 
Attachment of gold seeds to nanowires and shell growth 
 
Between 3 ml and 5 ml of the gold seed solution was added to 0.1 µl to 0.3µl of aqueous 
nanowire dispersion. In the case of the aminosilane coated wires hydrochloric acid has to be 
added first to adjust the pH to 3.5 in order to get a positively charged surface. We let the 
mixture react for a maximum of four hours and washed the product by repeated 
centrifugation/water redispersion cycles. The sediment after the seeding usually showed a 
dark color while the redispersed solution is slightly pinkish.  
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To obtain a stable Au(OH)3 solution, we added 5 ml of a 23 mM K2CO3 aqueous solution  to 
1.25 ml of a 12.5 mM HAuCl4 solution and let it react for up to two days in the dark.  
 
Finally, for the shell growth an amount of 400 µl of the seeded nanowires is diluted with 3 ml 
H2O. 1 ml of the aged K-gold solution is added. To start the growth of the gold shell around 
the seeds on the wires 20 mmol hydroxylamine solution is added as a reducing agent. The 
reaction takes place immediately and results in a clear pink solution. Stabilisation of the 
particles in solution was achieved by adding sodium citrate. 

 

2. Calculation of the optical response of core-shell nanowires 
The linear optical response of the core-shell nanowires can be solved analytically. Therefore 
we divide the scattering geometry into three domains (Fig. S1): The nanowire core with radius 
𝑅1 = 𝑟𝑐 and refractive index 𝑛1 = �𝜀𝑐, the nanowire shell with an outer radius 𝑅2 = 𝑟𝑠 and 
refractive index 𝑛2 = �𝜀𝑠 and the exterior with refractive index 𝑛3. In each domain 𝑙 the 
electric and the magnetic fields are expanded into cylindrical harmonics 1–3: 

whereby 𝑍0 denotes the free space impedance. 

 

Figure S1: Considered geometry of the core-shell nanowire. 

If we restrict the problem to the case of propagation normal to the nanowire axis, the vector-
cylindrical harmonics in polar coordinates (𝑟,𝜙) are given are given by 

 
𝐄𝑙 = � (𝚤𝑎𝑙𝑚𝐦𝑙𝑚 + 𝑏𝑙𝑚𝐧𝑙𝑚 + 𝚤𝐴𝑙𝑚𝐌𝑙𝑚 + 𝐵𝑙𝑚𝐍𝑙𝑚)

∞

𝑚=−∞

 and  

𝐇𝑙 =
𝑛𝑙
𝚤𝑍0

� (𝚤𝑎𝑙𝑚𝐧𝑙𝑚 + 𝑏𝑙𝑚𝐦𝑙𝑚 + 𝚤𝐴𝑙𝑚𝐍𝑙𝑚 + 𝐵𝑙𝑚𝐌𝑙𝑚)
∞

𝑚=−∞

 
(1) 

 

𝐦𝑙𝑚 = �
𝚤𝑚
𝑘𝑙𝑟

𝐻𝑚(𝑘𝑙𝑟)𝐞𝑟 − 𝐻𝑚′ (𝑘𝑙𝑟)𝐞𝜙� 𝑒𝚤𝑚𝜙, 

𝐧𝑙𝑚 = 𝐻𝑚(𝑘𝑙𝑟)𝐞𝑧𝑒𝚤𝑚𝜙, 
𝐌𝑙𝑚 = �

𝚤𝑚
𝑘𝑙𝑟

𝐽𝑚(𝑘𝑙𝑟)𝐞𝑟 − 𝐽𝑚′ (𝑘𝑙𝑟)𝐞𝜙� 𝑒𝚤𝑚𝜙 and 

𝐍𝑙𝑚 = 𝐽𝑚(𝑘𝑙𝑟)𝐞𝑧𝑒𝚤𝑚𝜙. 

(2) 
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Thereby 𝐽𝑚 is the Bessel function of the order 𝑚 and 𝐻𝑚  is the Hankel function of the first 
kind of the order 𝑚. The dash indicates the derivative with respect to the argument. 𝑘𝑙 =
2𝜋𝑛𝑙/𝜆 is the magnitude of the wave vector in the domain 𝑙 with the refractive index 𝑛𝑙 and 
the free space wavelength 𝜆. From the definition of the cylindrical harmonics it is obvious 
that for TM polarization 𝑏𝑙𝑚 = 𝐵𝑙𝑚 = 0 and for TE polarization 𝑎𝑙𝑚 = 𝐴𝑙𝑚 = 0 (the 
polarization directions are given in Fig. S1). The exciting wave is given by the coefficients 
𝐴3,𝑚 and 𝐵3,𝑚. The coefficients 𝑎1,𝑚 and 𝑏1,𝑚 are nonzero only if source multipoles are 
present in the core. Otherwise they have to vanish due to the singularity of the Hankel 
functions at the origin. The remaining unknown coefficients can be determined by matching 
the tangential fields at the boundaries of the layers of the nanowire and solving the resulting 
system of linear equations. After some lengthy calculations one obtains for TM polarization 

Whereby we have used the following abbreviations: 

For TE polarization one obtains analogously 

The abbreviated expressions 𝛼�, … ,𝜎� have the same structure as in case of TM polarization, 
except that the derived and the non-derived quantities are interchanged. 

Excitation by a plane wave 
The expansion coefficients of an incoming plane wave travelling along the positive x-
directiong are given by 1 

 
𝐴1,𝑚 =

−𝐴3,𝑚𝜖𝜅 + 𝑎1,𝑚(𝛾𝜈 + 𝛿𝜎)
𝛼𝛿 − 𝛽𝛾

,𝑎2,𝑚 =
𝐴3,𝑚𝛽𝜅 − 𝑎1𝛿𝜆

𝛼𝛿 − 𝛽𝛾
, 

𝐴2,𝑚 =
−𝐴3,𝑚𝛼𝜅 + 𝑎1,𝑚𝛾𝜆

𝛼𝛿 − 𝛽𝛾
, and 𝑎3,𝑚 = −

𝐴3,𝑚(𝛼𝜁 − 𝛽𝜂) + 𝑎1,𝑚𝜆𝜇
𝛼𝛿 − 𝛽𝛾

. 
(3) 

 

𝛼 = 𝐻𝑚′ (𝑘2𝑅1)𝐽𝑚(𝑘1𝑅1)𝑘1 − 𝐽𝑚′ (𝑘1𝑅1)𝐻𝑚(𝑘2𝑅1)𝑘2, 
𝛽 = 𝐽𝑚′ (𝑘2𝑅1)𝐽𝑚(𝑘1𝑅1)𝑘1 − 𝐽𝑚′ (𝑘1𝑅1)𝐽𝑚(𝑘2𝑅1)𝑘2, 
𝛾 = 𝐻𝑚′ (𝑘3𝑅2)𝐻𝑚(𝑘2𝑅2)𝑘2 − 𝐻𝑚′ (𝑘2𝑅2)𝐻𝑚(𝑘3𝑅2)𝑘3, 
𝛿 = 𝐻𝑚′ (𝑘3𝑅2)𝐽𝑚(𝑘2𝑅2)𝑘2 − 𝐽𝑚′ (𝑘2𝑅2)𝐻𝑚(𝑘3𝑅2)𝑘3, 
𝜖 = 𝐻𝑚′ (𝑘2𝑅1)𝐽𝑚(𝑘2𝑅1)𝑘2 − 𝐽𝑚′ (𝑘2𝑅1)𝐻𝑚(𝑘2𝑅1)𝑘2, 
𝜁 = 𝐽𝑚′ (𝑘3𝑅2)𝐽𝑚(𝑘2𝑅2)𝑘2 − 𝐽𝑚′ (𝑘2𝑅2)𝐽𝑚(𝑘3𝑅2)𝑘3, 
𝜂 = 𝐽𝑚′ (𝑘3𝑅2)𝐻𝑚(𝑘2𝑅2)𝑘2 − 𝐻𝑚′ (𝑘2𝑅2)𝐽𝑚(𝑘3𝑅2)𝑘3, 
𝜅 = 𝐽𝑚′ (𝑘3𝑅2)𝐻𝑚(𝑘3𝑅2)𝑘3 − 𝐻𝑚′ (𝑘3𝑅2)𝐽𝑚(𝑘3𝑅2)𝑘3, 
𝜆 = 𝐽𝑚′ (𝑘1𝑅1)𝐻𝑚(𝑘1𝑅1)𝑘1 − 𝐻𝑚′ (𝑘1𝑅1)𝐽𝑚(𝑘1𝑅1)𝑘1, 
𝜇 = 𝐻𝑚′ (𝑘2𝑅2)𝐽𝑚(𝑘2𝑅2)𝑘2 − 𝐽𝑚′ (𝑘2𝑅2)𝐻𝑚(𝑘2𝑅2)𝑘2, 
𝜈 = 𝐽𝑚′ (𝑘2𝑅1)𝐻𝑚(𝑘1𝑅1)𝑘1 − 𝐻𝑚′ (𝑘1𝑅1)𝐽𝑚(𝑘2𝑅1)𝑘2, and  
𝜎 = 𝐻𝑚′ (𝑘1𝑅1)𝐻𝑚(𝑘2𝑅1)𝑘2 − 𝐻𝑚′ (𝑘2𝑅1)𝐻𝑚(𝑘1𝑅1)𝑘1. 

(4) 

 
𝐵1,𝑚 =

−𝐵3,𝑚𝜖̃�̃� + 𝑏1,𝑚�𝛾�𝜈� + 𝛿𝜎��
𝛼�𝛿 − 𝛽�𝛾�

, 𝑏2,𝑚 =
𝐵3,𝑚𝛽��̃� − 𝑏1,𝑚𝛿�̃�

𝛼�𝛿 − 𝛽�𝛾�
, 

𝐵2,𝑚 =
−𝐵3,𝑚𝛼��̃� + 𝑏1,𝑚𝛾��̃�

𝛼�𝛿 − 𝛽�𝛾�
, and 𝑏3,𝑚 = −

𝐵3,𝑚�𝛼�𝜁 − 𝛽�𝜂�� + 𝑏1,𝑚�̃�𝜇�
𝛼�𝛿 − 𝛽�𝛾�

. 
(5) 

 𝐴3,𝑚 = 𝐸0,𝑦𝑒
𝚤𝜋
4 𝑚 and 𝐵3,𝑚 = 𝐸0,𝑧𝑒

𝚤𝜋
4𝑚 (6) 
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for TM and TE polarization, respectively. In the core region the regularity of the fields 
furthermore requires 𝑎1,𝑚 = 𝑏1,𝑚 = 0. With the known excitation coefficients it is straight 
forward to determine the remaining coefficients within the core and the shell region with the 
help of Eqs. (3) to (5). The fields in all domains can then be calculated from Eq. (1). By 
integration of the normal component of the Poynting vector along a closed path in the xy-
plane within the exterior domain the absorbed and the scattered power per cylinder length can 
be determined: 

 with 

After performing the integration and division by the wire diameter and the incident intensity 
𝐼in = 𝑛3|𝐄0|2 (2𝑍0)⁄  one finally arrives at the dimensionless scattering, extinction absorption 
efficiencies  

For TM polarization and 

 

𝑃abs = −�
1
2Γ

Re{(𝐄s + 𝐄i) × (𝐇s + 𝐇i)∗} ⋅ 𝐧ds = 𝑃𝑒𝑥𝑡 − 𝑃𝑠𝑐𝑎, 

𝑃sca = �
1
2Γ

Re{𝐄s × 𝐇s
∗} ⋅ 𝐧ds, and  

𝑃ext = −�
1
2Γ

Re{𝐄s × 𝐇i
∗ + 𝐄i × 𝐇s

∗} ⋅ 𝐧ds 

(7) 

 
𝐄i = � �𝚤𝐴3,𝑚𝐌3,𝑚 + 𝐵3,𝑚𝐍3,𝑚�

∞

𝑚=−∞

, 

𝐇i =
𝑛3
𝚤𝑍0

� �𝚤𝐴3,𝑚𝐍3,𝑚 + 𝐵3,𝑚𝐌3,𝑚�
∞

𝑚=−∞

, 
(8) 

 
𝐄s = � �𝚤𝑎3,𝑚𝐦3,𝑚 + 𝑏3,𝑚𝐧3,𝑚�

∞

𝑚=−∞

, 

𝐇s =
𝑛3
𝚤𝑍0

� �𝚤𝑎3,𝑚𝐧3,𝑚 + 𝑏3,𝑚𝐦3,𝑚�
∞

𝑚=−∞

. 
(9) 

 

𝑄scaTM =
𝑃scaTM

2𝑅2𝐼in  
=

2

𝑘3𝑅2�𝐵3,0�
2 � �𝑎3,𝑚�

2
∞

𝑚=−∞

, 

𝑄extTM =
𝑃extTM

2𝑅2𝐼in  
= −

2

𝑘3𝑅2�𝐴3,0�
2 � Re�𝑎3,𝑚𝐴3,𝑚

∗ �
∞

𝑚=−∞

, 

𝑄absTM = 𝑄extTM − 𝑄scaTM, 

(10) 

 

𝑄scaTE =
𝑃scaTE

2𝑅2𝐼in  
=

2

𝑘3𝑅2�𝐴3,0�
2 � �𝑏3,𝑚�

2
∞

𝑚=−∞

, 

 𝑄extTE =
𝑃extTE

2𝑅2𝐼in  
= −

2

𝑘3𝑅2�𝐵3,0�
2 � Re�𝑏3,𝑚𝐵3,𝑚

∗ �
∞

𝑚=−∞

, 

𝑄absTE = 𝑄extTE − 𝑄scaTE  

(11) 
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for TE polarization. 

Second harmonic generation 
For the treatment of the second harmonic generation we assume that the fundamental wave is 
not depleted and the generated power of the second harmonic is much weaker than that of the 
fundamental. In this case the fundamental wave creates a nonlinear polarization in the 
nanowire core that drives the second harmonic emission; however the power loss of the 
fundamental wave as well as the interaction between the second harmonic and the 
fundamental can be neglected. 

From the electric field of the fundamental wave within the KNbO3 core we determine the 
driving nonlinear polarization at the second harmonic frequency. For a KNbO3-crystal (point 
group mm2) with the c-axis aligned parallel to the nanowire axis (which is chosen to coincide 
with the z-direction of the coordinate system) the second harmonic component of the 
nonlinear polarization is given by 4,5 

The nonlinear coefficients 𝑑𝑖𝑗 of KNbO3 can be found in 5. With the known nonlinear 
polarization we have to solve Maxwell’s equations with a source current distribution at the 
second harmonic angular frequency 2𝜔: 

This can either be done numerically or analytically by the same cylindrical harmonics 
expansion method we discussed for the fundamental excitation. The emission from a source 
inside the core is already included in Eq. (3) and (5). All that remains is the determination of 
the coefficients 𝑎1,𝑚 and 𝑏1,𝑚 for the given nonlinear polarization. As we are not interested in 
the correct field distribution within the whole core but only at the interface to the shell layer, 
we can perform a multipole expansion of the source current distribution. 

The vector potential which is generated by a two dimensional current distribution in a 
homogeneous medium is given by 6 

 

�
𝑃𝑥NL(2𝜔)
𝑃𝑦NL(2𝜔)
𝑃𝑧NL(2𝜔)

�

= 2𝜀0 �
0 0 0 0 𝑑31 0
0 0 0 𝑑32 0 0
𝑑31 𝑑32 𝑑33 0 0 0

�

⎝

⎜
⎜
⎜
⎛

𝐸𝑥 (𝜔)2

𝐸𝑦 (𝜔)2

𝐸𝑧 (𝜔)2
2𝐸𝑦(𝜔)𝐸𝑧(𝜔)
2𝐸𝑥(𝜔)𝐸𝑧(𝜔)
2𝐸𝑥(𝜔)𝐸𝑦(𝜔)⎠

⎟
⎟
⎟
⎞

. 

(12) 

 ∇ × 𝐄(2𝜔) = 𝚤2𝜔𝜇0𝐇(𝜔SHG), 
∇ × 𝐇(2𝜔) = 𝐉NL − 𝚤2𝜔𝜀0𝜀𝐄(2𝜔), (13) 

 𝐣NL(2𝜔) = −𝚤2𝜔𝐏NL(2𝜔). (14) 

 𝐀(𝐫) = 𝜇0  
𝚤
4
�𝐣𝑁𝐿(𝐫′)𝐻0 (𝑘|𝐫−𝐫′|)d𝑥′d𝑦′. (15) 
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The resulting magnetic field can be obtained by taking the curl of 𝐀: 

Outside the source domain we can use Graf’s formula 7 to express the Green’s function 
𝐻0 (𝑘|𝐫−𝐫′|) in terms of Bessel and Hankel functions of higher order centered at the origin: 

Thus outside of the current distribution the vector potential takes the form 

By taking the curl of 𝐀 and comparing the result with Eq. (1) we find that 

Once the coefficients of the source inside the core have been determined, the remaining 
expansion coefficients can be calculated by Eq. (3) and (5) without an externally incident field 
(𝐴3,𝑚 = 𝐵3,𝑚 = 0). The emitted second harmonic power per wire length is then given by 

As in the undepleted pump approximation the emitted second harmonic power depends 
quadratically on the incident intensity, we will use the analogy with two photon excitation 
cross 𝜎TPE to quantize the second harmonic efficiency 𝜎SHG:  

whereby ℏ𝜔 is the photon energy of the fundamental wave and 𝐼in = 𝑛1|𝐄0|2 (2𝑍0)⁄  is the 
incident intensity. As 𝜎SHG is usually very small, it is convenient to express it in units of 
Goeppert-Mayer per µm wire length: 

 𝐇 =
1
𝜇0
∇ × 𝐀. (16) 

 𝐻0 (𝑘|𝐫−𝐫′|) = � 𝐻𝑚(𝑘𝑟)𝑒𝚤𝑚𝜙𝐽𝑚(𝑘𝑟′)𝑒−𝚤𝑚𝜙′
∞

𝑚=−∞

. (17) 

 𝐀(𝐫) = 𝜇0 � 𝐻𝑚(𝑘𝑟)𝑒𝚤𝑚𝜙𝐐𝑚
∞

𝑚=−∞

 (18) 

 with 𝐐𝑚 =
𝚤
4
�𝐣𝑁𝐿(𝐫′)𝐽𝑚(𝑘𝑟′)𝑒−𝚤𝑚𝜙′r′d𝑟′d𝜙′. (19) 

 𝑎1,𝑚 =
𝑘1𝑍0
𝑛1

1
2
�𝑄𝑥𝑚+1 + 𝚤𝑄𝑦𝑚+1 + 𝑄𝑥𝑚−1 − 𝚤𝑄𝑦𝑚−1  �, and (20) 

 𝑏1,𝑚 =
𝑘1𝑍0
𝑛1

𝚤𝑄𝑧𝑚. (21) 

 𝑃SHG =
1

2𝑍0𝑘3
� ��𝑎3,𝑚�

2
+ �𝑏3,𝑚�

2
�

∞

𝑚=−∞

. (22) 

 𝜎SHG =
𝑃SHG (2ℏ𝜔)⁄  
[𝐼in (ℏ𝜔)⁄  ]2  

=
ℏ𝜔
2
𝑃SHG
 𝐼in2

 (23) 

 1
GM
µm

= 10−58
s ⋅ m3

photon
m
µm

. (24) 
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Convergence and comparison with numerical results 
In any practical implementation of the described algorithm the infinite sums in Eq. (1) have to 
be truncated at some finite expansion order |𝑚| ≤ 𝑁. We therefore investigated how many 
cylindrical harmonics have to retained in order to obtain accurate results. In all calculations 
we assumed a nanowire core made of KNbO3 with a 7.5 nm thick gold shell illuminated with 
a TM polarized fundamental wave. The optical constants of KNbO3 and gold were taken from 
references 5 and 8, respectively. For the exterior we assumed air (𝑛3 = 1). The calculation of 
the multipole coefficients of the nonlinear source current was performed by numerical 
integration of Eq. (19) in polar coordinates using the trapezoidal rule with a radial resolution 
of 1 nm and an angular step size of 1°.  

The relative error of the emitted second harmonic power in dependence of the maximum 
expansion order of the fundamental wave 𝑁fun and of the second harmonic 𝑁SHG at a 
fundamental wavelength of 800 nm is shown in Fig. S2. The reference for the calculation of 
the relative error was obtained by increasing the expansion orders until the resulting change 
was smaller than the machine precision. As can be seen in Fig. S2 the proposed algorithm 
converges extremely fast. Even for a core radius as large as 200 nm only a few cylindrical 
harmonics need to be considered in order to achieve a good accuracy. However it is notable 
that, despite the much larger wavelength of the fundamental wave, at least as many expansion 
orders are required for the fundamental wave as for the second harmonic in order not to limit 
the overall convergence. This behavior is understandable as the nonlinear polarization 
depends quadratically on the fundamental fields and therefore any error in the fundamental 
wave will lead to twice the relative error in the second harmonic emission. 

  
Figure S2: Convergence of the calculated SHG power with increasing order of the retained cylindrical harmonics for 
the expansion of the fundamental wave (|𝒎| ≤ 𝑵𝐟𝐮𝐧) and the second harmonic (|𝒎| ≤ 𝑵𝐒𝐇𝐆). The fundamental 
wavelength was 800 nm. 

To demonstrate the validity of the multipole expansion of the second harmonic source current 
we calculated the emitted second harmonic power of the real current distribution numerically 
with the finite differences frequency domain (FDFD) method 9. A comparison between 
numerically calculated two photon excitation cross section and the results obtained by the 
cylindrical harmonics expansion is shown in Fig. S3 for various core radii with a 7.5nm thick 
gold shell. There is a perfect agreement between the results of the FDFD method and the 
analytical calculations. The deviation between both methods is less than 1%. This we assume 
is the accuracy limit of our FDFD implementation for the used grid resolution of 1.25 nm. 
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Furthermore we would like to point out that the FDFD method is about two orders of 
magnitude slower than the cylindrical harmonics expansion. 

 

Figure S3: Comparison of the two photon excitation cross section calculated with the cylindrical harmonics expansion 
(symbols) with results obtained by numerical finite difference frequency domain calculations (solid lines). 

 

3. Comparison of the plasmonic resonances of square and cylindrical nanowires 
The emission of square nanowires cannot be treated by our analytical model as the field 
expansion relies on the circular symmetry. Nevertheless, linear calculations (Fig. S4) show 
that both the absorption cross-section and the field enhancement of a square wire are 
comparable to the cylindrical case. 

 

Figure S4:Comparison of the plasmonic resonances of square and cylindrical nanowires with equal core volume and 
shell thickness 
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4. Typical SHG images taken with the EMCCD 
We measured the SHG signal with an EMCDD taking images (Fig. S5) at each different 
wavelength that are subsequently integrated to obtain the Fig. 5 a). Fig. S4 shows the SHG 
response of the uncoated nanowire and core-shell structure. A modulation of the SHG signal 
can be seen from the Fig. S5 (b) that can be attributed to several effects as cavity modes along 
the nanowires,10 whispering gallery modes,11 or hot spots due the an inhomogeneous gold 
shell. Such effects require further investigations to be clearly identified. They might also be a 
combination of several mechanisms.12 

 

 

Figure S5: Measured SHG signal with the EMCCD after filtering out the near infrared excitation from (a) the bare 
nanowire and (b) the core-shell nanowire at 820 nm excitation wavelength. 
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