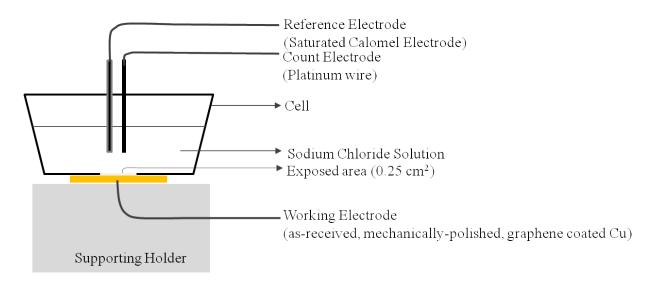
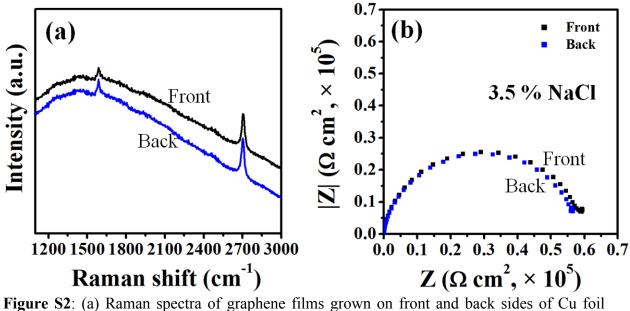
Supplementary Information for

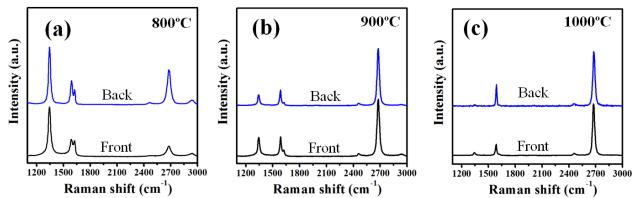
Enhancement of Seawater Corrosion Resistance in Copper Using Acetone-Derived Graphene Coating

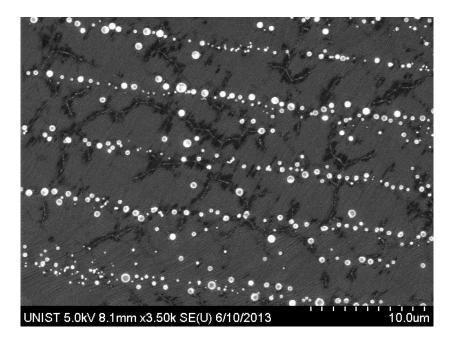

Jae-Hoon Huh,^{a,b} Seung Hyun Kim,^c Jae Hwan Chu,^a Sung Youb Kim,^{b,c} Ji Hyun Kim,^{*,a,c} and Soon-Yong Kwon^{*,a,b,c}

^a School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea


^b Opto-Electronics Convergence Group & Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

^c School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea


*To whom correspondence should be addressed. Email: <u>kimjh@unist.ac.kr</u>, <u>sykwon@unist.ac.kr</u>


Figure S1: Three-electrode cell configuration for electrochemical corrosion test of asreceived, mechanically-polished, and graphene-coated Cu.

after growth at 1,000 °C for 3 min. (b) Impedance behavior of front and back sides of Cu foil graphene-coated Cu in seawater condition.

Figure S3: Raman spectra of graphene films transferred onto $SiO_2(300 \text{ nm})/Si$ substrates after growth at (a) 800 °C, (b) 900 °C, and (c) 1,000 °C for 3 min. Note that graphene grew on both the front and back side of the Cu foil.

Figure S4: SEM image of corrosion diffusion traces through grain boundary of monolayer graphene-coated Cu after EIS test in 3.0 % NaCl solution.