Supporting Information for:

Co-Crystallization Phase Transformations in All-Conjugated Block Copolymers with Different Main-Chain Moieties

Yi-Huan Lee,^{a,b} Wei-Chih Chen,^b Yi-Lung Yang,^b Chi-Ju Chiang,^a Tsutomu Yokozawa,^c and Chi-An Dai^{*a,b,}

^aDepartment of Chemical Engineering and ^bInstitute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 Taiwan ^cDepartment of Material & Life Chemistry, Kanagawa University, Rokkakubashi, Kanagamaku, Yokohama 221-8686 Japan

* Corresponding author: Chi-An Dai, Professor
Address: No. 1, Roosevelt Rd. Sec. 4, Department of Chemical Engineering, National Taiwan
University, Taipei 10617 Taiwan
Phone No. 886-2-3366-3051, Fax No. 886-2-2362-3040, Email: polymer@ntu.edu.tw

Materials.

Acetone (Acros, 99.8%), 1-bromohexane (Acros, 99%), hydroquinone (Acros, 99.5%), iodobenzene diacetate (Acros, 98%), 1-bromo-2-ethylhexane (Acros 95%), [1,3bis(diphenylphosphino)propane]dichloronickel(II) (Ni(dppp)Cl₂, Acros, 99%), iodine (Mallinckrodt, 99.8%), bromine (Br₂, Acros, 99%), magnesium turnings (Acros, 99.9%), potassium carbonate (K₂CO₃, Acros, 99%), and *N*-bromosuccinimide (NBS, Acros, 99%) were used as received without purification. Column chromatography was performed on silica gel (230-400 mesh ASTM, Merck silica gel).

Scheme S1 Synthetic routes of M1 and M2 monomers.

Fig. S1 The deconvolution of the (100) peak of **P32E53** is determined by a procedure based on the best fitting of a Lorentzian function. The orange and green dashed lines indicate the corresponding (100) peak of P3EHT crystalline and PPP-P3EHT cocrystalline domains, respectively.

Fig. S2. X-ray diffraction (XRD) scans of PPP and P3EHT homopolymers.

Fig. S3. In order to investigate the staining time on the TEM contrast, P34E64 samples were used by using RuO_4 as the staining agent for P3EHT domains. (a) 3 mins, (b) 5 mins, (c) 10 mins, and (d) 30mins. The RuO_4 staining for 5 mins giving the best contrast is used for all block copolymers.

Fig. S4. Dependence of the d-spacing of $(100)_{P+E}$ plane on the weight fraction of P3EHT in the cocrystals.