Electronic Supplementary Information (ESI)

Metal-organic frameworks derived Fe₂O₃@NiCo₂O₄ porous nanocages as anode materials for Li-ion batteries

Gang Huang^{ac}, Leilei Zhang^{ac}, Feifei Zhang^{ac} and Limin Wang^{ab*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China

^b Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Limin Wang, Email: lmwang@ciac.ac.cn, Tel: +86-431-85262447, Fax:

+86-431-85262836.

Fig. S1 XRD pattern of the as-prepared Ni₃[Co(CN)₆]₂·nanocubes.

The average crystallite size of NiCo is calculated to be 48.96 nm by the Debye–Scherrer formula, *i.e.* eqn (1) and (2), based on the three strongest peaks ($2\theta = 17.50^{\circ}$, 24.84°, 35.42°), while the crystallite size of CoFe is 21.24 nm based on the peaks at $2\theta = 17.68^{\circ}$, 25.22°, 35.80°, separately.

$$D = k\lambda / (\beta \cos\theta) \tag{1}$$

$$\beta = B - b \tag{2}$$

where D is the average crystallite size, k is the Scherrer constant (0.89), λ is the wave length of X-ray radiation (1.5406 Å), β and B is the full width at half maximum for the tested sample and the experimental measured value, b is the instrument width factor, θ is the Bragg angle of diffraction.

Fig. S2 SEM images of the as-prepared Ni₃[Co(CN)₆]₂·nanocubes.

Fig. S3 TEM images of the as-prepared $Ni_3[Co(CN)_6]_2$ nanocubes.

Fig. S4 Particle size distribution derived from SEM images.

Fig. S6 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of Fe₂O₃@NiCo₂O₄ nanocages.

Fig. S7 Ex XRD patterns of the Fe_2O_3 ($@NiCo_2O_4$ electrodes before cycling and after the initial discharge/charge processes.

The broad peak around $20\sim30^{\circ}$ in the ex XRD patterns of the Fe₂O₃@NiCo₂O₄ electrode is resulting from the lithiated-carbon materials and the SEI.¹

Fig. S8 (a) Charge–discharge voltage profiles of the NiCo₂O₄ electrode for the 1st, 2nd, 10th, 50th and 100th cycles in the voltage range of 0.01-3.0 V at a current rate of 100 mA g⁻¹ (0.1 C) (b) Capacity *vs.* cycle number of the NiCo₂O₄ at a current rate of 100 mA g⁻¹ (0.1 C). (c) Capacity *vs.* cycle number of the M-Fe₂O₃@NiCo₂O₄ at a current rate of 100 mA g⁻¹ (0.1 C). (d) Capacity *vs.* cycle number of the Fe₂O₃@NiCo₂O₄ at a current rate of 200 mA g⁻¹ (0.2 C).

	Max size	Min size	Average size
	(nm)	(nm)	(nm)
NiCo	395	337	378
CoFe@NiCo	447	384	413
Fe ₂ O ₃ @NiCo ₂ O ₃	244	192	213

References:

1. L. W. Su, Y. Y. Zhong and Z. Zhou, J. Mater. Chem. A, 2013, 1, 15158.