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Theory of the nsOCT

It is well known that the object’s structure can be described using 3D function, which is usually called the
scattering potential:
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where k; = f , n— refractive index, , K - scattering vector. If r is large enough, then
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S, Sg are unit vectors of scattered and illumination waves (Fig.1a). In Cartesian coordinates K can be also written
as

K=27z(v,i+v,j+v,K) 4)

where 1, 1 and v, — spatial frequencies along Cartesian coordinates.

We restrict our consideration to first Born approximation and do not show the dependence on time frequency.
According to the this approximation in the scalar theory of scattering, if the object is illuminated by a
monochromatic plane wave, the complex amplitude of the scattered wave at a given wavelength in the far zone
for a given direction depends entirely on only one Fourier component (one spatial frequency) of the 3D
scattering potential, labelled by the vector K. At a constant illumination angle, the end points of each vector

Fourier component of the 3D scattering potential corresponds to a point on Ewald’s sphere with radius R = % .

If the object is illuminated by a plane wave with a certain spectral bandwidth, then, at a fixed illumination angle
(Fig. 1a), the spatial frequencies distribution in K-space can be illustrated as multiple Ewald’s spheres with
different diameters. The example of such spheres for object illuminated along optical axis z for n=1, depending
on the wavelength, is presented in Fig. 1b.
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Fig. 1. (a) — Schematic of object illumination and collection; (b) — spatial frequency representation in K-space
depending on wavelength.

The relations between spatial frequencies and wavelength can be written as
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where n is the refractive index, @ is illumination angle, « is the scattering angle, and ¢ is the azimuthal angle
(Fig. 1).
If we measure the scattered field (the complex amplitudes of the Fourier components) for all possible
wavelengths, directions of illumination and scattering, then we could synthesize the 3D Fourier transform of the
scattering potential. After that the scattering potential could be reconstructed as 3D inverse Fourier transform
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But even if spatial frequencies will be captured for all possible directions of illumination and scattering, we still
will have limited range of spatial frequencies, the scattering potential will be reconstructed under low-pass
filtered approximation and the best possible resolution is about half of wavelength. In conventional optical
diffraction tomography the collected range of spatial frequencies is further limited by optical system. During the
inverse Fourier transform to reconstruct the axial profile, the spatial information is integrated and, as a result,
the resolution and sensitivity are reduced.

From Fig. 1 and Eg. (6) it can be seen that within moderate scattering angle o there is one to one
correspondence between axial spatial frequency and wavelength. A spectral encoding of spatial frequency
(SESF) approach uses this to encode axial spatial frequency through spectral diversity, translate it from Fourier
domain into the image domain as a wavelength and map to each voxel of the 2D image.

OCT is one dimensional solution of the optical inverse scattering problem, where the Fourier components are
collected along axial direction only (black line in Fig. 1b). Image formation in Fourier domain OCT (FDOCT) is
based on a modification of the original formalism for the one-dimensional problem. In FDOCT each wavelength
in collected spectrum corresponds to one axial spatial frequency (Fig. 1b) and so the axial component of the 3D
scattering potential can be reconstructed via simplified Eq. (7), as 1D inverse Fourier transform. The axial
spatial frequency range is
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where AL =4, — 4, is the spectral range.

The axial spatial resolution of the FDOCT is limited by the range of axial spatial frequencies and can be
calculated using formula:
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where A, - central wavelength. So to improve the axial resolution it is necessary to increase the spectral range

AN.

Instead of straightforward way to improve the resolution and sensitivity of the OCT to structural changes by
increasing the spectral range, we use different approach to probe the nanostructure, which we called nsOCT.
Equation (6) for 1D OCT case can be rewritten as
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To realize nsOCT we first convert the collected complex amplitudes of the spectrum to complex amplitudes of
axial spatial frequencies according to (10). The complex spectrum of axial spatial frequencies can be
decomposed into multiple sub-bands. We can also divide the object space into multiple volumes of interest
(VOI) and calculate the energy contribution E,, of the £y, spatial frequency sub-band to the spatial period profile
of the my, VOI at H, as

In(Ha) = Uy 0 0, 1)
Vm

where V, represents the integration volume of the my, VOI, and U,, (r) is the inverse Fourier relation given by
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where r,, indicates that the contribution of the £y, spatial frequency sub-band is considered only for the my, VOI.
By computing the energy contribution 1,,(H.,) for all the spatial periods H.,, calculated using Eq. (10), we obtain

axial spatial period profile for the my, VOI. Using this procedure the axial spatial period profiles can be
reconstructed for each voxel of the 3D image.

The signal processing flow chart for conventional FDOCT and nsOCT is presented in Fig. 2.
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Fig. 2. The signal processing flow chart for conventional FDOCT and nsOCT.

Due to Fourier relation between K-space and object-space, the axial sampling interval in K-space controls the
axial extent of the object. So the width of each sub-band will determine the axial size of the VOI within the
object and the number of the sub-bands will determine the number of points for reconstruction of the axial
spatial period profiles.

The smallest axial size of the VOI (axial voxel size) for given spatial frequency range 4w, within £y, sub-band
can be defined as
1
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The smallest lateral size of the VOI is intrinsically defined by the diffraction-limited lateral resolution of the
reconstructed 3D object. Submicron local structure can be visualized as corresponding spatial period profiles
and nanoscale structural alterations within each voxel can be detected.

The smallest change in axial spatial period 8H, that the nsOCT can detect is defined as the sensitivity. The
theoretical sensitivity to structural changes can be estimated by formula:
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where 8\ is the accuracy of the wavelength determination. One can estimate that if we measure the wavelength
with accuracy 1 nm, then the theoretical sensitivity to structural changes is about 0.5 nm in air.

Fig. 3. SD-OCT setup for realization nsOCT.

The nsOCT was realized using full range SD-OCT setup presented in Fig. 3. A broadband 1310 nm
superluminescent diode with bandwidth of 83 nm (SLD, Dense Light, Singapore) was coupled into the
interferometer, via an optical coupler. The HeNe laser was used for system alignment.The spectrometer
consisted of a 50 mm focal length collimator, a 1145 lines/mm transmitting grating, an achromatic lens with a
100 mm focal length and a 14-bit, 1024 pixels InGaAs line scan camera (SU1024LDH2, Goodrich Ltd. USA)
with a maximum acquisition rate of 91 kHz. This spectrometer setup had a spectral resolution of 0.1432 nm,
which gave a maximum imaging range of ~6 mm (in air). The frame rate for B-scan was 50 Hz. The measured
axial imaging resolution of the system was ~ 12 um in air (~9.2 um in human skin). The sample arm consists of
a pair of galvanometric driven mirrors and an objective lens with 50 mm diameter (NA=0.03) which provided a
lateral resolution of ~ 30 um. The measured sensitivity of the system was ~105 dB near the zero-delay line. The
sensitivity drop off of the system was ~20 dB at a depth range + 3 mm. The measured axial imaging resolution
of the system was ~ 12 um in air and a lateral resolution was ~ 30 pm.

NSOCT images were formed as maps of the maximal spatial periods for each voxel. According to presented
theoretical analysis the uncertainty in spatial periods determination for NA= 0.03 objective lens was less than 1
nm. We used the voxel size in NSOCT images 30 pm x 30 um x 50 pm. The spatial interval to reconstruct
profiles of the axial spatial periods was 4 nm.



