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1. Notation

v Volume of a small sample
V Volume of a large reservoir
n Number of molecules in small sample
N Number of molecules in large reservoir
λ Mean concentration in molecules per unit volume
 Mean number of molecules in volume v𝑛̅

p0 Probability of obtaining no molecules in a single well
   Probability of r out of R wells containing at least one molecule𝑝(𝑋 = 𝑟|𝑅 )

k Dilution factor
σ Standard deviation
cd Concentration in dilution d
S Nominal volume of the sample 
B Nominal volume of the blank
sr Random error in the sample volume∆
br Systematic error in the sample volume∆

d Number of dilutions
r Fractional dilution error resulting from random errors∆𝑘

s Fractional dilution error resulting from systematic errors∆𝑘



2. Poisson-Binomial model

Figures S1: Schematic of sampling of very dilute solutions

Given three samples of very dilute solution in volumes v = 100μl, containing on 
average c molecules of solute per unit volume (Figure S1), what is the probability of 
there being no molecules in one, two or all three of the samples? We use ’molecules’ 
as shorthand for ’molecules of solute’, since the solvent molecules play no part in the 
analysis. The samples were prepared by a series of dilutions from a more concentrated 
solution, but this process is irrelevant if we know the mean number of molecules that 
occupy a final volume v.

First let us ask how many molecules you expect to find in one specific region of 
volume v within a big reservoir of volume V >> v containing a total of N molecules 
randomly distributed throughout the volume. The mean concentration in any sample 
taken from the reservoir is then related to N and V by c = N/V.

The mean number of molecules in a volume v is given by

𝑛̅ =  𝑣𝑐

Imagine dropping the molecules into the big reservoir one at a time. The probability 
that the first molecule ends up in v is v/V, and therefore the probability that it doesn’t 
end up in v is

 
(1 ‒ 𝑣

𝑉)
Since the dropping of molecules is independent, the probability p0 that none of them 
ends up in the volume v is



𝑝0 = (1 ‒ 𝑣
𝑉)𝑁 = (1 ‒ 𝑛̅

𝑁)𝑁

At this point we can use the fact that N is very large compared to , and a well-known 𝑛̅
mathematical formula tells us that:

lim
𝑛→∞ (1 + 𝑛̅

𝑁)𝑁 =  𝑒 ‒ 𝑛̅

from which we deduce that, for practical purposes

𝑝0 = 𝑒 ‒ 𝑛̅ =  𝑒 ‒ 𝑐𝑣

We are interested in four outcomes of the three final wells, namely: the probability of 
none, one, two or three wells containing no solute molecules. However, more 
generally there may be up to R wells at a given dilution and we wish to know the 
probability that r of these contain at least one molecules of solute. If they are 
uncorrelated, the Poisson distribution applies to each of the R independent (Binomial) 
trials and we have:

𝑝(𝑋 = 𝑟|𝑅) =  (𝑅
𝑟)(𝑝0)𝑅 ‒ 𝑟(1 ‒ 𝑝0)𝑟

This Poisson-Binomial model is widely used in the interpretation of serial dilution 
experiments1. Poisson models have also been applied in the context of single 
molecule detection2. 



3. Application to plasmonic ELISA
For a nominal concentration of 10-n g/mL, the expected number of molecules per well 
can be determined using the molecular weight of the compound. In the case of gp120, 
the molecular weight is approximately 120 kDa. In 100 μL, we therefore have on 
average 5 molecules per well at 10-17 mg/l and 0.5 molecules per well at 10-18 g/mL. 
The probability of a given number of wells containing at least one molecule can then 
be derived from the Poisson-Binomial distribution. For example, given a mean value 
of 0.5 molecules per well (10-18 g/mL) the chance of obtaining one well with at least 
one molecule of solute is given by:

𝑃(𝑋 = 1|3) =  (3
1)(𝑒 ‒ 0.5)2(1 ‒ 𝑒 ‒ 0.5)1 = 0.434 

The corresponding number of molecules for p24 (24 kDa) as used by de la Rica and 
Stevens3 is five times that of gp120. As a consequence, single molecules are more 
likely to be obtained in lower concentrations for p24 than gp120.

In Table 1 (reproduced below for convenience), the probability of r wells containing 
at least one biomarker at the nominal concentration is reported for concentrations in 
the range 10-16 g/mL to 10-19 g/mL. Outside this dilution range the probability of 
obtaining either no wells with molecules (<10-19 g/mL) or all wells containing 
molecules (>10-16 g/mL) is the most likely outcome. The results from de la Rica and 
Stevens3 using p24 are included for comparative purposes. In both cases we find that 
the most likely outcome (highlighted in bold) has been observed. These calculations 
suggest that the results observed in the two experiments are consistent. For three 
replicates, the relationship between concentration and probability of r of the final 
pipettes containing at least one molecule is shown in Figure S2. 

Table 1: Probability distribution of wells with at least one biomarker. 
Probabilities calculated using the Poisson-Binomial model and based on nominal 
concentrations at the 10-18 g·mL-1 dilution of 2.5 per well for p24 and 0.5 per well for 
gp120. Probabilities calculated using the Poisson-Binomial model and based on 
nominal concentrations at the 10-18 g·mL-1 dilution of 2.5 per well for p24 (as in de la 
Rica and Stevens[3]) and 0.5 per well for gp120. Probabilities of the most likely 
outcome corresponding to results observed in here for gp120 and in de la Rica and 
Stevens[3] for p24 are highlighted in bold, and in both cases this is precisely the 
outcome observed. 

Dilution (g/ml) Biomarker
 

Wells containing 
biomarker 10-17 10-18 10-19

0 0.000 0.223 -
1 0.000 0.434 -
2 0.020 0.282 -gp120

3 0.980 0.061 -
0 0.000 0.001 0.472
1 0.000 0.019 0.402
2 0.000 0.207 0.114p241

3 1.000 0.773 0.011
1As reported in de la Rica and Stevens3 and included for comparative purposes. 



Figure S2: Probability of r pipettes out of 3 containing no molecules,  
for r = 0, 1, 2, and 3



4. Dilution error
At each stage of the dilution, a volume of sample S is added to a volume of blank B 
such that the concentration per unit volume at the dth dilution, cd is related to the 
concentration at the previous stage as follows

𝑐𝑑 =
𝑐𝑑 ‒ 1𝑆
𝑆 + 𝐵 = 𝑘𝑐𝑑 ‒ 1

where k is the dilution factor, nominally 0.1 in the case of a ten-fold dilution.

Dilution error arises due to a combination of random (“imprecision”) and systematic 
(“inaccuracy”) errors in pipetting for both the sample (100 μL) and blanks (900 μL). 
We define these errors as s and b with subscripts to denote whether the errors are 
random (e.g. sr) or systematic (e.g. ss).∆ ∆

The pipettes used in these experiments (ThermoScientific FinnpipetteTM) have 
according to the manufacturer an inaccuracy (tolerance limit) of 1% for the 100μl and 
0.6% for the 1000μl pipettes. The corresponding random errors, reported as 
coefficients of variation (CoV), are respectively 0.4% and 0.2%. In calibration 
experiments (n=20) using both pipettes, we found our errors to be somewhat lower 
with the exception of the inaccuracy of blanks (7.4 μL versus 6 μL). We use the 
manufacturer values for our reported error bars and therefore have in μL: 

sr = 0.4∆
br = 2 ∆
ss = 1 ∆
bs = 6∆

In this experiment, solutions for calibrating the system were obtained by serially 
diluting a stock solution containing gp120 with the concentration of 10-4 g/mL (10-5 g 
per 100 μL). A total of 14 ten-fold dilutions were required to obtain the final dilution 
of 10-18 g/mL.

4.1. Random dilution error
The random errors can be modeled as independent Gaussian distributions, whose 
combined variance is summed using standard error propagation theory

𝜎𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛,  𝑟𝑎𝑛𝑑𝑜𝑚
2 = 𝑑∆𝑘𝑟

2

where fr is the fractional dilution error factor resulting from random errors in the 
sample and blank and d is the number of dilutions. 

As above, the dilution factor k is related to the sample and blank volumes

𝑘 = 𝑆
𝑆 +  𝐵

For small errors in S and B of  and  the standard formula for deriving errors uses ∆𝑠𝑟 ∆𝐵
partial differentiation and combination of errors by quadrature



∆𝑘𝑟
2 =  (∂𝑘

∂𝑆∆𝑠𝑟)2 +  (∂𝑘
∂𝑆∆𝑏𝑟)2

By partial differentiation of k and quadrature:

∆𝑘𝑟
2 =+  ( ‒ 𝐵

(𝑆 + 𝐵)2)2∆𝑠𝑟
2 +  ( 𝑆

(𝑆 + 𝐵)2)2∆𝑏𝑟
2

∆𝑘𝑟
2

𝑘2 = (𝑆 + 𝐵
𝑆 )2 

 𝑆2∆𝑏𝑟
2 + 𝐵2∆𝑠𝑟

2

(𝑆 + 𝐵)4

Which simplifies to:

 
∆𝑘𝑟

2

𝑘2 =
 𝑆2∆𝑏𝑟

2 + 𝐵2∆𝑠𝑟
2

𝑆2(𝑆 + 𝐵)2

And is equivalent to4:

∆𝑘𝑟
2

𝑘2 = 𝑘2(1 ‒ 𝑘)2(∆𝑏𝑟
2

𝐵2 +
 + ∆𝑠𝑟

2

𝑆2 )
Using the manufacturers values for random error, we obtain a value of 0.4411% for 

. The random error therefore ranges from 0.9% after 5 dilutions (10-8 g/mL) to ∆𝑘𝑟

1.6% after 15 successive dilutions (10-18 g/mL).

4.2. Systematic dilution error
The influence of the systematic errors can be investigated by examining the influence 
of the manufacturers’ reported tolerance limits and their influence on the value of the 
dilution factor k, which for a ten-fold dilution is nominally 0.1.

For the upper limit we have:

𝑘(1 + ∆𝑘𝑠, 𝑢𝑝𝑝𝑒𝑟) =  
𝑆 + ∆𝑠𝑠

𝑆 + ∆𝑠𝑠 + 𝐵 ‒  ∆𝑏𝑠
= 0.101446

therefore the systematic error is: 

(∆𝑘𝑠, 𝑢𝑝𝑝𝑒𝑟
𝑘 )𝑑 =  1.01446𝑑

Correspondingly for the lower limit we have:

(∆𝑘𝑠, 𝑙𝑜𝑤𝑒𝑟
𝑘 )𝑑 =  1.01443𝑑



As this is a geometric series, the error diverges in percentage terms with the upper 
limits exceeding those of the lower limits. At the 10-18 g/mL dilution the systematic 
error in the upward direction reaches 25.1% and is substantially greater than the 
random error. If we instead use the experimental value of the inaccuracy of the blank 
(-7.4 μL) and sample (+0.4 μL), the error is within these bounds.

4.3. Combined dilution error
In order to combine dilution errors we add the predicted confidence intervals (95%) 
for the random error based on a Gaussian distribution to the systematic error limits 
(Table S2). Equivalent calculations were performed for Bovine Serum Albumin 
(BSA).

Table S2: Error analysis for dilution series used in plasmonic ELISA. Based on 
manufacturer’s reported imprecision and inaccuracy. Systematic errors are propagated 
and combined using quadrature. Systematic error is combined with 95% CI for 
random errors based on the Gaussian distribution.

Dilution
(g/mL)

Dilution
(mol. per 

well)

Random 
dilution 

error
(CoV, %)

Systematic 
dilution 
error1

(±%)

Combined 
dilution 
error1

(±%)

Combined 
dilution error

(± mol.)

10-14 5000 1.37 17.9 20.8 1040
10-15 500 1.43 19.7 22.7 114
10-16 50 1.48 21.5 24.7 12.4
10-17 5 1.54 23.3 26.6 1.33
10-18 0.5 1.59 25.2 28.6 0.14

1We report the systematic error for the upper limits as these are larger than for the lower limits due to 
their geometric nature. For example in the 10-18 mg/L dilution the lower limit is 20.1%, compared with 
25.2% for the upper limit

5. Sampling variability
In addition to the aforementioned errors, uncertainty in the number of molecules per 
well also arises due to pure sampling. Since sampling follows the Poisson 
distribution, the standard deviation is equal to the square root of the expected number 
of molecules. Consequently the coefficient of variation is small at high 
concentrations, but can be very large for dilute solutions. 

In Table S2, we provide 95% confidence interval for the number of molecules per 
well at the nominal concentration according to the Poisson distribution. Contrasting 
Tables S2 and S3, it can be seen that the sampling variability is the dominant form of 
uncertainty for the number of molecules per well at the lowest dilutions. 

Table S3: Sampling variability and total uncertainty. Sampling variability based on 
Poisson sampling. Total uncertainty derived by convoluting Gaussian dilution errors with 
Poisson sampling distribution.  
Dilution Dilution Sampling 

variability
Sampling variability

(g/mL) (mol. per 
well)

(CoV,%) (mol. per well; 95% CI)



   Lower Upper
10-14 5000 1.4 4900 5200
10-15 500 4.5 460 550
10-16 50 14 36 64
10-17 5 45 1 9
10-18 0.5 140 0 2

6. Supplementary references
1. W. G. Cochran, Biometrics, 1950, 6, 105-116.
2. D. M. Rissin and D. R. Walt, Nano letters, 2006, 6, 520-523.
3. R. de la Rica and M. M. Stevens, Nature nanotechnology, 2012, 7, 821-824.
4. W. Hyk and Z. Stojek, Analytical Chemistry, 2013, 85, 5933-5939.


