## **Supporting Information**

## Synthesis and Optimizable Electrochemical Performance of Reduced Graphene Oxide Wrapped Mesoporous TiO<sub>2</sub> Mircospheres

Xiao Yan<sup>a</sup>, Yanjuan Li<sup>b</sup>, Fei Du<sup>a</sup>, Kai Zhu<sup>a</sup>, Yongquan Zhang<sup>a</sup>, Anyu Su<sup>a</sup>, Gang Chen<sup>a,c</sup>, and Yingjin Wei<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education),

College of Physics, Jilin University, Changchun 130012, P. R. China.

<sup>b</sup> College of Material Science and Engineering, Key Laboratory of Automobile Materials of

Ministry of Education, Jilin University, Changchun 130012, PR China

<sup>c</sup> State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China

Corresponding author: yjwei@jlu.edu.cn (Y. J. Wei)

Tel & Fax: 86-431-85155126



Fig. S1 TGA curves of the TiO<sub>2</sub>/RGO samples with different RGO contents, (a) 5.3 wt%, (b)

8.9 wt%, and (c) 11.2 wt%.



Fig. S2 C 1s XPS spectra of the graphene oxide.



Fig. S3 AFM image of the graphene oxide.



Fig. S4 SEM image of the lab-prepared ordinary  $TiO_2$  nanoparticles.



Fig. S5 SEM images of the  $TiO_2$  and  $TiO_2/RGO$  electrodes after 80 charge-discharge cycles.



Fig. S6 Rate dependent cycling performance of RGO in the voltage range of 1.0-3.0 V.



Fig. S7 Rate dependent cycling performance of TiO<sub>2</sub>/RGO with different RGO contents.