Supplementary Information

Direct Evidence of Plasmon Enhancement on Photocatalytic Hydrogen

Generation over Au/Pt-Decorated TiO₂ Nanofibers

Zhenyi Zhang,^{a,b} Anran Li,^b Shao-Wen Cao,^b Michel Bosman,^c Shuzhou Li,^b and Can Xue*^b

^a School of Physics and Materials Engineering, Dalian Nationalities University,

Dalian, 116600, China.

^b Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang

Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. Fax: +65 6790 9081; Tel: +65 6790 6180; E-mail: cxue@ntu.edu.sg

^c Institute of Materials Research and Engineering A* STAR, 3 Research Link, 117602,

Singapore.

Figure S1. High resolution XPS spectra of Au 4f or/and Pt 4f regions for (A) Pt₁/TiO₂ nanofibers; (B) Au₁/TiO₂ nanofibers; (C) Au_{0.75}/Pt_{0.25}/TiO₂ nanofibers.

Elements	Pt ₁ /TiO ₂ nanofibers	Au ₁ /TiO ₂ nanofibers	Au _{0.75} /Pt _{0.25} /TiO ₂ nanofibers
Pt4f7 Pt (0)	70.7 eV		70.6 eV
Pt4f7 Pt (II)	72.5 eV		72.5 eV
Pt4f7 Pt (IV)	74.7 eV		74.7 eV
Au4f7 Au (0)		83.4 eV	83.4 eV

Table S1. Peak position of binding energy of the samples

As observed in Figure 1S, the XPS results shows that the Au species in the Au_1/TiO_2 nanofibers are only metallic Au^0 state, while there are three states of Pt species in the Pt_1/TiO_2 nanofibers, including the metallic Pt^0 state, Pt^{2+} state, and Pt^{4+} state.^{1,2} The presence of Pt^{2+} and Pt^{4+} state might be attributed to the formation of Pt-O bond on the surface of Pt nanostructures, which is agreement to the literatures.^{3, 4} By comparing the peak positions of binding energy with the Au_1/TiO_2 and Pt_1/TiO_2 nanofibers in table S1, the Au4f7 and Pt4f7 peaks in the $Au_{0.75}/Pt_{0.25}/TiO_2$ nanofibers are nearly unchanged, indicating that the Au and Pt NPs were co-decorated in the TiO₂ nanofibers, and no Au-Pt alloy formation.

Figure S2. (A) TEM image and (B) dark-field STEM image of the Au_{0.75}/Pt_{0.25}/TiO₂
nanofibers; Elemental mapping images from image A: (C) Au element; (D) Pt element; (E)
Size distribution histogram of metal NPs in the Au_{0.75}/Pt_{0.25}/TiO₂ nanofibers calculated from the above STEM image; (F) EDS spectrum of the Au_{0.75}/Pt_{0.25}/TiO₂ nanofibers.

Figure S3. UV-Vis absorption spectra of the (a) $Au_{0.75}/Pt_{0.25}/TiO_2$ and (b) Au_1/TiO_2 nanofibers, which are converted from diffuse reflectance spectra by means of the Kubelka-Munk function.

Figure S4. H₂ evolution amount for the Au/Pt/TiO₂ nanofibers with different mole ratios of Au to Pt versus the irradiation wavelength after 2 h irradiation by using L-ascorbic acid (H₂A) as the sacrificial agents in 10 mL aqueous solution.

Figure S5. H₂ evolution amount of the Au_1/TiO_2 and $Au_{0.75}/Pt_{0.25}/TiO_2$ nanofibers under irradiation at 420 ±10 nm for 4h.

Figure S6. Cycling test of photocatalytic H₂ evolution for the Au_{0.75}/Pt_{0.25}/TiO₂ nanofibers under 420 nm irradiation. It demonstrates that the Au_{0.75}/Pt_{0.25}/TiO₂ nanofibers have very good stablility in the photocatalytic reaction for H₂ generation.

- Zhang, P.; Shao, C.; Li, X.; Zhang, M.; Zhang, X.; Sun Y.; Liu, Y. In situ assembly of well-dispersed Au nanoparticles on TiO₂/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. *J. Hazard. Mater.* 2013, *331*, 237-238.
- Ono, L. K.; Yuan, B.; Heinrich H.; Cuenya, B. R. Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. *J. Phys. Chem. C* 2010, *114*, 22119-22133.
- Ding, Y.; Wang, Y.; Zhang, L.; Zhang, H.; Li C. M.; Lei, Y. Preparation of TiO₂-Pt hybrid nanofibers and their application for sensitive hydrazine detection. *Nanoscale* 2011, *3*, 1149-1157.
- Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram V.; Subbanna, G. N. Ionic Dispersion of Pt over CeO₂ by the Combustion Method: Structural Investigation by XRD, TEM, XPS, and EXAFS. *Chem. Mater.* 2003, *15*, 2049-2060.