Supporting Information for

Strongly coupled hybrid nanostructures for selective hydrogen detection – understanding the role of noble metals in reducing cross-sensitivity

Bin Liu,^a Daoping Cai,^b Yuan Liu, ^a Dandan Wang, ^a Lingling Wang, ^a Wuyuan Xie,^c Qiuhong Li^{*a} and Taihong Wang ^{*a}

^a Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University, Xiamen, 361005, China.

^b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

^c Department of Physics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen, 361005, China

Corresponding author: Qiuhong Li, *Email: <u>liqiuhong2004@hotmail.com</u>;* Taihong Wang, *Email: thwang@xmu.edu.cn*

Fig. S1 (a) XRD pattern of the WO_3 NPs. (b) Detailed peak position comparison of the WO_3 NPs with the reference pattern taken from JCPDS No. 83-0950.¹

Fig. S2 SEM images of the WO₃ NPs synthesized by adding different amount of hydrochloric acid: (a) 0.1 mL, (b) 0.2 mL, (c) 0.4 mL, (d) 0.6 mL, (e) 0.8 mL and (f) 1.0 mL.

Fig. S3 TEM (a) and high resolution TEM (b) images of the Pt/Pd bimetallic nanocubes.

Energy (keV)

Fig. S4 EDX spectrum and the quantification analysis results of the Pt/Pd-WO₃ hybrid nanostructures.

Fig. S5 The resistance change of the TA and CA sensor under a thermal shock (rapid heating from room temperature to 80 $^{\circ}$ C). The slight decrease in the resistance of the TA sensor in the first minute is most probably caused by the self-heating effect.²

Fig. S6 SEM images of the ZnO columns and SnO_2 octahedrons synthesized according to Ref. S3 and Ref. S4, respectively.

Fig. S7 Transient responses of the TA sensors made from ZnO (a) and SnO_2 (b) to different hydrocarbon gases.

Gas	Structure	HOMO (eV)	R_WO3	R_ZnO	R_SnO2
CH4	X	-12.5	5.5	2.1	2.23
C2H2	0- 0-0 -0	-9.8	12.1	20.1	77.7
C2H6	રૂં-હ	-11.1	5.8	2.4	3.9
СзНв	*9 ^{*5} 9*	-10.6	5.7	2.4	5.5
C4H10	,3 ₉ 3 9'	-10.4	5.6	2.5	4.1

Table S1 Summary of the molecular structures, HOMO energy levels and responses of the three TA sensors to different hydrocarbon gases with a concentration of 0.1 vol%.

Fig. S8 Optical images of the device, showing the dimensions of the sensor.

1. P. M. Woodward, A. W. Sleight and T. Vogt, J Phys Chem Solids, 1995, 56, 1305-1315.

2. E. Strelcov, S. Dmitriev, B. Button, J. Cothren, V. Sysoev and A. Kolmakov, *Nanotechnology*, 2008, 19. 355502

3. Xi-Guang Han, Hui-Zhong He, Qin Kuang,* Xi Zhou, Xian-Hua Zhang, Tao Xu, Zhao-Xiong Xie,*

Lan-Sun Zheng, J. Phys. Chem. C, 2009, 113, 584.

4. X.G. Han, M.S. Jin, S.F. Xie, Q. Kuang,* Z.Y. Jiang, Y.Q. Jiang, Z.X. Xie,* L.S. Zheng, Angew. Chem. Int. Ed., 2009, 48, 9180-9183.