Electronic Supplementary Information

Local structural investigation of Eu³⁺-doped BaTiO₃ nanocrystals

Federico A. Rabuffetti, Sean P. Culver, John S. Lee, and Richard L. Brutchey*

Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

*To whom correspondence should be addressed. Email: <u>brutchey@usc.edu</u>.

EXPERIMENTAL

Synthesis of Eu:BaTiO₃ Nanocrystals. *x*Eu:BaTiO₃ (x = 0, 1, 2, 3, 4, and 5 mol%) nanocrystals were synthesized via a vapor diffusion sol–gel method described elsewhere.^{1, 2} Synthetic manipulations were conducted at room temperature under N₂ atmosphere using standard Schlenk techniques. Eu(acac)₃·*y*H₂O (99.9%, Aldrich) and a solution of BaTi(OCH₂CH(CH₃)OCH₃)₆ in *n*-butanol/2-methoxypropanol (1:3 v/v) (0.5 M, Gelest Inc.) were used as precursors. In a typical synthesis, 2.0 mL (1.0 mmol) of BaTi(OCH₂CH(CH₃)OCH₃)₆ were mixed with the appropriate mass of Eu(acac)₃·*y*H₂O (e.g., 4.5 mg (1 × 10⁻² mmol) of Eu(acac)₃·*y*H₂O were employed in the synthesis of 1% Eu:BaTiO₃). The resulting mixture was stirred for 20 min, after which complete dissolution of Eu(acac)₃·*y*H₂O occurred. Diffusion of water vapor over the precursor solution was conducted at room temperature and atmospheric pressure for 48 h. The resulting gel was collected, washed with absolute ethanol (2 × 10 mL), and dried under vacuum at room temperature for 4 h, yielding a fine, off-white powder consisting of Eu:BaTiO₃ nanocrystals.

Synchrotron X-ray Diffraction. X-ray diffraction (XRD) patterns were collected at the 11–ID–B line of the Advanced Photon Source at Argonne National Laboratory. An incident photon energy of 90.484 keV ($\lambda = 0.137024$ Å) was employed. Samples were loaded in Kapton tubes and diffraction data were collected in transmission mode at room temperature.

Transmission Electron Microscopy. Transmission electron microscopy (TEM) images were obtained using a JEOL JEM2100F (JEOL Ltd.) electron microscope operating at 200 kV. Samples were dispersed in methanol and deposited on a 400 mesh Cu grid coated with a ultrathin carbon film mounted on a holey carbon film (Ted Pella Inc.).

Photoluminescence. Steady-state excitation and emission spectra of Eu:BaTiO₃ nanocrystals were collected using a Horiba Nanolog spectrofluorometer equipped with a 450 W Xe lamp as the excitation source and a photomultiplier tube as the detector. Lifetime measurements were performed on a Photon

Technology International QuantaMaster Model C-60 spectrofluorometer equipped with a Xe flash lamp as the excitation source. The time-correlated single photon counting method was employed. All spectra were collected under ambient conditions with a spectral resolution of ± 1 nm.

X-ray Absorption Spectroscopy. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were collected at the 20–BM–B line of the Advanced Photon Source at Argonne National Laboratory. The incident X-ray beam was monochromatized using a Si(111) double crystal. A harmonic rejection mirror was used to eliminate higher harmonics, and the beam intensity was detuned an additional 10% to further reduce any residual harmonics. Measurements at the Eu *L*3 edge (6976 eV) were performed in fluorescence mode in the case of Eu:BaTiO₃ nanocrystals, and in transmission mode in the case of bulk Eu₂O₃. Samples were prepared by spreading a thin, uniform layer of powder on Kapton tape. The incident X-ray beam size was 1×6 mm (unfocused). Spectra were collected between 6850 and 7400 eV at room temperature and under flowing helium. Each spectrum was normalized by subtracting the pre-edge and applying an edge-jump normalization using the Athena software.³

Rietveld Analysis. Rietveld structural refinements were carried out using the GSAS software.⁴ Experimental data and atomic X-ray scattering factors were corrected for sample absorption and anomalous scattering, respectively. The perovskite phase was refined in the centrosymmetric, cubic $Pm\overline{3}m$ space group, and the stoichiometry was fixed at BaTiO₃ (i.e., x = 0 Eu mol%). The following parameters were refined: (1) scale factor, (2) background, which was modeled using a shifted Chebyschev polynomial function, (3) peak shape, which was modeled using a modified Thomson–Cox–Hasting pseudo-Voigt function,⁵ (4) lattice constant *a*, and (5) an isotropic atomic displacement parameter for each chemical species (i.e., U_{Ba} , U_{Ti} , and U_0). For 0 and 1 mol% Eu:BaTiO₃ compositions, a BaCO₃ phase (ICSD No. 158378, orthorhombic *Pmcn* space group) was included in the refinement. For the carbonate phase, the following parameters were refined: (1) scale

factor, (2) peak shape, which was modeled using a modified Thomson–Cox–Hastings pseudo-Voigt function, (3) lattice constants a, b, and c, and (4) a global, isotropic atomic displacement parameter (i.e., $U = U_{Ba} = U_{C} = U_{O}$). The R_{wp} indicator was employed to assess the quality of the refined structural models.⁶

Pair Distribution Function Analysis. The pair distribution function (PDF) G(r) defined as:

$$G(r) = 4\pi r [\rho(r) - \rho_0] = (2 / \pi) \int_Q^{Q_{max}} Q[S(Q) - 1] \sin(Qr) \, dQ$$

was employed for structural analysis. Here, *r* is the radial distance, $\rho(r)$ and ρ_0 are the local and average atomic number density, respectively, and *Q* is the magnitude of scattering vector defined as *Q* = $(4\pi / \lambda) \sin \theta$, where 2θ is the angle between incident and scattered X-rays. The RAD software was employed to extract *G*(*r*) from the raw diffraction data.⁷ These were first corrected for background, sample absorption, and Compton scattering. Then, normalized structure functions *S*(*Q*) were obtained. Finally, *S*(*Q*) was Fourier-transformed to yield *G*(*r*). A maximum scattering vector (*Q*_{max}) of 25 Å⁻¹ was employed in the Fourier transform. Structural refinements were carried out in the 1.5–20 Å interatomic distance range out using the PDFgui software.⁸ The perovskite phase was refined in the noncentrosymmetric, tetragonal *P4mm* space group. The following parameters were refined: (1) scale factor, (2) lattice constants *a* and *c*, (3) *z* coordinate of the titanium atom (*z*_{Ti}), and (4) an isotropic atomic displacement parameter for each chemical species (i.e., *U*_{Ba}, *U*_{Ti}, and *U*_O). The stoichiometry was fixed at BaTiO₃ (i.e., *x* = 0 Eu mol%) and the positions of the oxygen atoms were fixed at (½, 0, ½) and (½, ½, 0). The *R*_w indicator was employed to assess the quality of the refined structural models.^{9,10}

EXAFS Analysis. k^2 -weighted and normalized $\chi(k)$ functions were extracted from the raw X-ray absorption data using the Atena software.³ A first-shell, single-scattering model was employed to fit the Fourier-transform of the experimental $\chi(k)$ functions (i.e., $\chi(r)$). Fourier transforms of $\chi(k)$ were computed in the 2–8 Å⁻¹ k range for 1 mol% Eu:BaTiO₃, 2–9 Å⁻¹ k range for all of the other

compositions, and 2–11 Å⁻¹ k range for bulk Eu₂O₃, which was employed as a standard. In all cases, a dk step of 1 Å⁻¹ was used. Fits of $\chi(r)$ were carried out using the Artemis software in the 1–2.75 Å r range, with a dr step of 0.15 Å.³ The fractional misfit R factor was employed to assess the quality of the fits.

TABLES AND FIGURES

Table S1 Structural Parameters of xEu:BaTiO₃ Nanocrystals Extracted From Rietveld Analysis

x (Eu mol%)	a (Å)	$V(\text{\AA}^3)$	$U_{ m Ba}({ m \AA}^2)^a$	$U_{ m Ti}({ m \AA}^2)^a$	$U_{\rm O}({\rm \AA}^2)^a$	$R_{\rm wp}$ (%)
0^b	4.0357(2)	65.727(10)	0.95(6)	1.67(8)	0.00(12)	2.7
1^c	4.0335(2)	65.622(11)	1.20(5)	1.94(9)	0.22(12)	3.0
2	4.0380(3)	65.841(13)	1.25(7)	1.88(10)	0.39(15)	3.6
3	4.0400(2)	65.934(11)	1.19(6)	2.01(9)	0.50(14)	3.2
4	4.0399(2)	65.934(11)	1.23(6)	2.08(9)	0.48(14)	3.0
5	4.0402(2)	65.947(10)	1.25(5)	2.36(9)	1.06(15)	2.0

^{*a*} Atomic displacements parameters are given as $100 \times U$. ^{*b*} Contains 9.10(18) wt. % of BaCO₃. *a* = 5.264(8) Å, *b* = 8.983(13) Å, *c* = 6.423(7) Å. *U* = 0.7(3). ^{*c*} Contains 5.3(4) wt. % of BaCO₃. *a* = 5.272(9) Å, *b* = 8.943(16) Å, *c* = 6.424(11) Å. *U* = 0.4(5).

Fig. S1. Rietveld analysis of XRD patterns of Eu:BaTiO₃ nanocrystals. Experimental (\circ) and calculated (—) patterns are shown for each sample along with the difference curve (—) and tickmarks (|) corresponding to the phase(s) refined. Upper and lower tickmarks correspond to the perovskite and

BaCO₃ phases, respectively. Nominal europium concentrations (mol%) and R_{wp} residuals are shown on

the top left and right corners, respectively.

Fig. S2. TEM images of $Eu:BaTiO_3$ nanocrystals. Nominal europium concentrations (mol%) are indicated. Particle size distribution histograms are shown in the insets. Nanocrystals sit in the holey carbon support film.

Fig. S3. Structure functions S(Q) of Eu:BaTiO₃ nanocrystals. Nominal europium concentrations (mol%) are indicated.

Fig. S4. Experimental (\circ) and calculated (\longrightarrow) ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ decay of the Eu³⁺ ions in Eu:BaTiO₃ nanocrystals. Nominal europium concentrations (mol%), lifetimes (τ), and fit residuals (R^{2}) are indicated. A single exponential of the form $I_{615}(t) = A \times \exp(-t/\tau) + B$ (A and B are constants) was employed to fit the experimental data;

Fig. S5. k^2 -weighted and normalized $\chi(k)$ spectra of Eu:BaTiO₃ nanocrystals. Nominal europium concentrations (mol%) are indicated.

REFERENCES

- 1. F. A. Rabuffetti, J. S. Lee and R. L. Brutchey, Adv. Mater. 2012, 24, 1434–1438.
- 2. F. A. Rabuffetti, J. S. Lee and R. L. Brutchey, Chem. Mater. 2012, 24, 3114–3116.
- 3. B. Ravel and M. Newville, J. Synchrotron Rad. 2005, 12, 537–541.
- 4. A. C. Larson and R. B. Von Dreele, *General Structure Analysis System (GSAS)*; Los Alamos National Laboratory: 2000.
- 5. P. Thomson, D. E. Cox and J.M. Hasting, J. Appl. Crystallogr. 1987, 20, 79-83.
- 6. R. A. Young, *The Rietveld Method*. Oxford University Press: New York, 1993.
- 7. V. Petkov, J. Appl. Crystallogr. 1989, 22, 387-389.
- 8. C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bozin, J. Bloch, Th. Proffen and S. J. L. Billinge, *J. Phys.: Condens. Matter* 2007, **19**, 335219.
- 9. T. Egami and S. J. L. Billinge, Underneath The Bragg Peaks: Structural Analysis of Complex Materials. Pergamon: 2003.
- 10. V. Petkov, M. Gateshki, M. Niederberger and Y. Ren, Chem. Mater. 2006, 18, 814-821.