Supplementary Information for

One-Step Synthesis of Graphene Nanoribbon / MnO₂ Hybrids and Their All-Solid-State Asymmetric Supercapacitors

Mingkai Liu,^a Weng Weei Tjiu,^b Jisheng Pan,^b Chao Zhang,^a Wei Gao,^a and Tianxi Liu*^a

^aState Key Laboratory of Molecular Engineering of Polymers, Department of

Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China. E-mail:

txliu@fudan.edu.cn; Tel: +86-21-55664197

^bInstitute of Materials Research and Engineering, A*STAR (Agency for Science,

Technology and Research), 3 Research Link, Singapore, 117602, Singapore

Figure S1. TGA curves of the GNR sheets and $GNR-MnO_2$ hybrids with different mass loadings of MnO_2 nanoparticles.

Figure S2. SEM image of $GNR-MnO_2$ hybrid and its corresponding EDS mapping for C (green), Mn (red) and O (purple) elements.

Figure S3. XRD patterns of pristine CNTs, the GNR sheets and GNR- MnO_2 hybrid with different mass loadings of MnO_2 nanoparticles.

Figure S4. The electrical equivalent circuit used for fitting the impedance spectra.