Supporting Information

Electrochemical properties of micron-sized, spherical, meso- and

macro-porous Co₃O₄ and CoO-carbon composite powders

prepared by two-step spray drying process

Jung Hyun Kim and Yun Chan Kang*

Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu,

Seoul 143-701, Korea

This file includes:

- Schematic diagram of the spray drying process.
- XRD patterns of the powders post-treated in nitrogen and air atmospheres.
- Nitrogen adsorption and desorption isotherms and pore size distribution curves of the Co₃O₄ and CoO-carbon composite powders.
- Rate capabilities of the Co_3O_4 and CoO-carbon composite powders, acquired by step-wise increment in the current densities from 500 to 10000 mA g⁻¹ for successive cycles in the voltage range of 0.01-3.0 V.
- Cyclic voltammograms of the CoO-C composite powders for the first tenth cycles at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0.01–3 V.
- TEM images of the precursor powders prepared by spray drying process after posttreatment at 400 °C under nitrogen atmosphere.
- TEM image of the CoO-carbon composite powders prepared by second-step spray drying process.
- Initial discharge/charge curves and cycling performance of the CoO-carbon precursor powders before milling.

Fig. S1. Schematic diagram of the spray drying process.

Fig. S2. XRD patterns of the powders post-treated in nitrogen and air atmospheres.

Fig. S3. Nitrogen adsorption and desorption isotherms and pore size distribution curves of the Co_3O_4 and CoO-carbon composite powders.

Fig. S4. Rate capabilities of the Co_3O_4 and CoO-carbon composite powders, acquired by step-wise increment in the current densities from 500 to 10000 mA g⁻¹ for successive cycles in the voltage range of 0.01-3.0 V.

Fig. S5. Cyclic voltammograms of the CoO-C composite powders for the first tenth cycles at a scan rate of 0.1 mV s^{-1} in the voltage range of 0.01-3 V.

Fig. S6. TEM images of the precursor powders prepared by spray drying process after post-treatment at 400 °C under nitrogen atmosphere.

Fig. S7. TEM image of the CoO-carbon composite powders prepared by second-step spray drying process.

(b) cycling performance

Fig. S8. Initial discharge/charge curves and cycling performance of the CoO-carbon precursor powders before milling.

	Table S1. Electro literature.	ochemical properties	s of cobalt oxides pre	pared by various m	ethods from	1
Material	Morphology	Preparation method	Voltage range [V] / Current rate	Initial C _{dis} / C _{cha} [mA h g ⁻¹]	C _{dis} [mA h g ⁻¹] / cycles	Ref.
Co ₃ O ₄	Flower-like porous spheres	Hydrothermal process	0.01 – 3.0 / 50 mA g ⁻¹	1316 / 899	300 / 20th	[2]
Co ₃ O ₄	Nanostructured fibers	Electrospinning	0.01 – 3.0 / 50 mA g ⁻¹	816 / -	741 / 20th	[4]
Co ₃ O ₄	Nanofibers	Electrospinning	0.01 – 3.0 / 445 mA g ⁻¹	1336 / -	604 / 40th	[6]
Co ₃ O ₄ /C	Hollow spheres	Spray pyrolysis	0.02 – 3.0 / 30 mA g ⁻¹	800 / -	800 / 50th	[29]
C@Co ₃ O ₄	Carbon coated spheres	Hydrothermal process	0.5 – 3.0 / 440 mA g ⁻¹	818 / -	567 / 107th	[30]
CoO	Nanoparticles	Urea-assisted auto-combustion synthesis	0.005 – 3.0 / 0.1 mA cm ⁻²	1159 / -	565 / 23th	[53]
CoO	Octahedral nanocages	Coordination-mediated etching route	0.05 – 3.0 / 143 mA g ⁻¹	1338 / -	807 / 50th	[18]
CoO/CNF	Platelike CoO /carbon nanofibers	Thermal decomposition and recrystallization	0.01 – 3.0 / 200 mA g ⁻¹	841 / -	725 / 100th	[36]
Co₃O₄/CoC graphene	^{//} Nanosheets	Urea-assisted auto-combustion synthesis	0.005 – 3.0 / 21 mA g ⁻¹	1158 / 890	801 / 30th	[56]

Г