Strain Engineering of Selective Chemical Adsorption on Monolayer MoS₂

Liangzhi Kou^{a,*}, Aijun Du^b, Changfeng Chen^c and Thomas Frauenheim^a

- ^a Bremen Center for Computational Materials Science, University of Bremen, Am Falturm 1, 28359 Bremen, Germany
- ^b School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- ^c Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada, 89154, United States

*Corresponding author: kouliangzhi@gmail.com

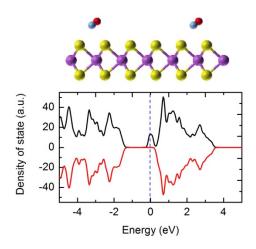


Figure S1. Top: structural model of the 4×4 MoS₂ with 2 NO adsorption; Bottom: the calculated electronic density of states, which shows that half-metallicity is preserved.

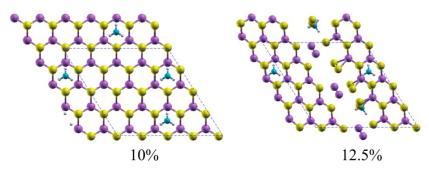


Figure S2. Structural breaking with the adsorption of two ammonia molecules, and the dashed frame denotes the studied supercell.

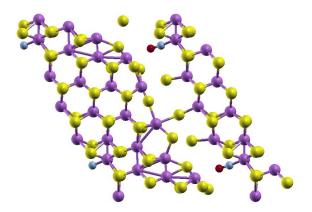


Figure S3. Relaxed structure of NO adsorbed MoS₂ under 18% strain.

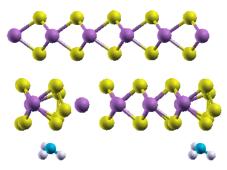


Figure S4. The structure of bilayer MoS_2 with NH_3 adsorption under 12.5% strain.