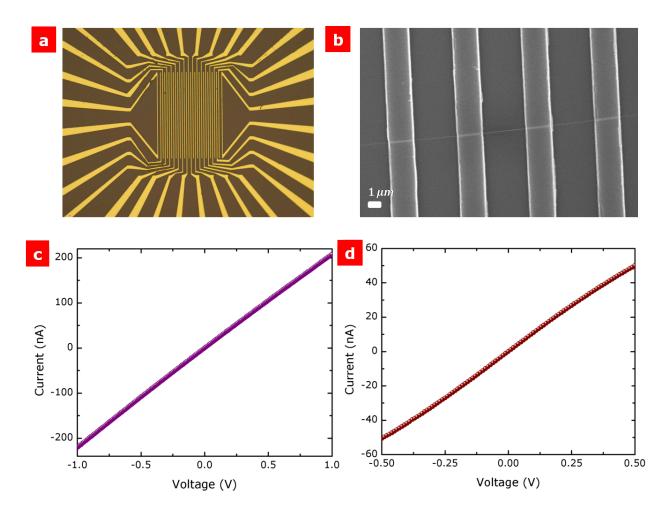
Supporting Information

High Performance Si Nanowire Field-Effect-Transistors Based on a CMOS Inverter with Tunable Threshold Voltage

By Ngoc Huynh Van, Jae-Hyun Lee¹, Jung Inn Sohn², Seung Nam Cha², Dongmok Whang¹, Jong Min Kim², and Dae Joon Kang*

[*] Prof. Dae Joon Kang, Ngoc Huynh Van


BK21 Physics Research Division, Department of Energy Science, Institute of Basic Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Jangan-gu, Suwon 440-746, Republic of Korea.

E-Mail: djkang@skku.edu

Jae-Hyun Lee, Prof. Dongmok Whang

¹School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Dr. Jung Inn Sohn, Dr. Seung Nam Cha, Prof. Jong Min Kim ²Department of Engineering Science, University of Oxford, Oxfordshire OX1 3PJ, United Kingdom

Fig. S1. (a) Optical and (b) FE-SEM images of Si NWFET devices; four probe measurements of n-type (c) and p-type (d) Si NWs; The n-type Si NW resistance (R) of $4.63 \times 10^6 \Omega$ was extrapolated from the linear region of the current-voltage curve of four probe measurements. The resistivity $\rho = 0.22 \ \Omega$ cm was calculated according to $\rho = RA/L$, where $A = \pi^{-2}$ is the Si NW cross section, L is the conducting channel length of the nanowire (~5 µm), and r is the radius of the nanowire (~27.5 nm). The resistance, $R = 10^7 \Omega$, and resistivity, $\rho = 0.48 \ \Omega$ cm, were calculated for p-type Si NWs from Fig. S1.d.

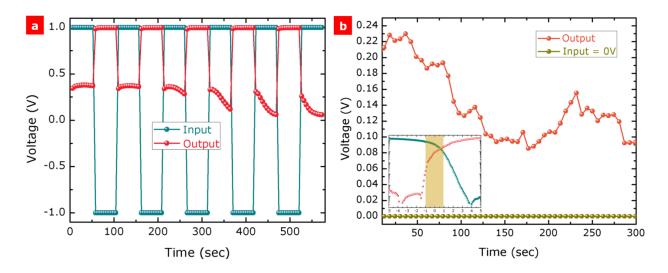


Fig. S2. (a) The dynamic response of the inverter to square wave input pulses of ± 1 V and (b) Output voltage at an input gate voltage of 0 V with V_{dd} set at 1 V

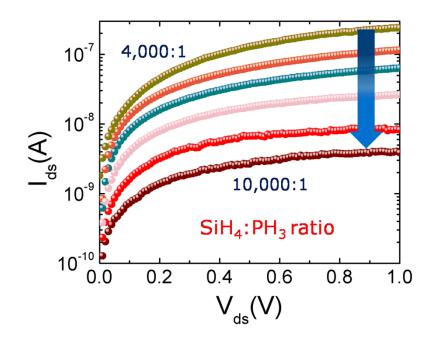
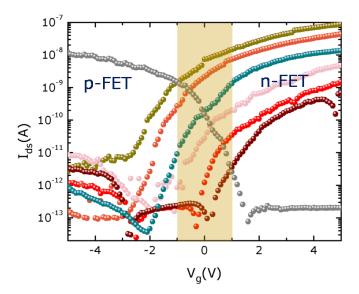



Fig. S3. The output characteristics (I_{ds} - V_{ds}) of n-type Si NWFETs at different doping concentrations of Silane (SiH₄)/ Phosphine (PH₃) gas ratios of 4,000:1 to 10,000:1. Gate voltage of 5 V.

Fig. S4. (a) I_{ds} - V_g transfer characteristics of n-type Si NWFETs at different doping concentrations of Silane (SiH₄)/ Phosphine (PH₃) gas ratios of 4,000:1 to 10,000:1 and p-type Si NWFET at doping concentration of Silane (SiH₄)/Diborane (B₂H₆) gas ratio of 5,000:1