## **Supplementary Information**

## Solar-Thermal Energy harvesting Scheme: Enhanced heat capacity of molten HITEC salt

mixed with  $Sn/SiO_x$  core-shell nanoparticles

Chih-Chung Lai<sup>1</sup>, Wen-Chih Chang <sup>1</sup>, Wen-Liang Hu<sup>2</sup>, Zhiming M. Wang<sup>3</sup>, Ming-Chang Lu<sup>2,\*</sup>, and Yu-

Lun Chueh<sup>1,\*</sup>

<sup>1</sup>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

<sup>2</sup>Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 30013, Taiwan.

<sup>3</sup> State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science

and Technology of China Chengdu 610054, P. R. China

\*E-mail: M.C.L. (mclu@mail.nctu.edu.tw) and Y.L.C. (ylchueh@mx.nthu.edu.tw)



Figure S1 SEM images of the pure Hitec salt.



Figure S2 Diameter distribution of pure Sn and Sn/SiO<sub>x</sub> core-shell NPs, respectively.

| Point | Sn    | Si    | 0     | Total (at%) |
|-------|-------|-------|-------|-------------|
| a     | 43.09 | 29.56 | 27.35 | 100         |
| b     | 17.10 | 74.67 | 8.23  | 100         |

Table S1 Corresponding EDX analysis as noted in Figure 3(d).



Figure S3 (a) HAADF image of  $Sn/SiO_x$  core-shell NPs



Figure S4 XRD spectra of pure Sn NPs annealed at different temperatures



Figure S5 XRD spectra of Sn NPs with 10 nm-thick SiO<sub>x</sub> shell layer before and after rapid thermal



annealed at 500°C for five minutes.

Figure S6 SEM images of the Hitec salt mixed with 5 % Sn/SiO<sub>x</sub> core-shell NPs. Inset shows the

corresponding high magnified SEM of Sn/SiO<sub>x</sub> core-shell NPs dispersed in the Hitec salt matrix.