Supplementary Information for:

Synthesis and Near-infrared Fluorescence of K₅NdLi₂F₁₀

Nanocrystals and Its Dispersion with High Doping

Concentration and Long Lifetime

Weikuan Duan,^{*a,c*} Yanyan Zhang,^{*a,c*} Zhongyue Wang,^{*a*} Jingyi Jiang,^{*a*} Chen Liang,^{*a*} and Wei Wei^{*b,**}

^a Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, P.R. China.

^b School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, P.R. China. E-mail: <u>iamww@fudan.edu.cn</u>

S1. Fitting curve of refractive index

Figure S1. fitting curve of refractive index for $K_5NdLi_2F_{10}$ nanocrystals dispersion in PEG400

Figure S1 shows the fitting curve of refractive index for $K_5NdLi_2F_{10}$ nanocrystals dispersion in PEG-400, which was measured on WYV-V-prismrefractometer. The

experimental data was analyzed by soft of MATrix LABoratory. We could get the refractive index at 1048 nm was 1.4579.

S2. Judd-Ofelt calculation

Based on the absorption spectrum which was shown in the inset picture of Figure 7, there are five transitions corresponding to transitions from ${}^{4}I_{9/2}$ ground state manifold to various excited states. The experimental oscillator strengths (f_{exp}) of each electronic transition of Nd³⁺ can be evaluated by the following Equation S1¹:

$$f_{\exp} = \frac{mc^2}{\pi e^2 N \lambda^2} \int \alpha(\lambda) d\lambda$$
 (1)

Where *m* and *e* are electron mass and charge, *c* is the velocity of light, *N* is the number density of Nd³⁺ ions, and α (λ) is the absorption coefficient. According to Judd–Ofelt theory, the calculated oscillator strengths (f_{cal}) of electronic transitions from the ground state (*aJ*) level to the excited state (*bJ'*) level are given by the Equation S2²:

$$f_{cal}(aJ,bJ') = \frac{8\pi^2 mc}{3h\lambda(2J+1)} \frac{(n^2+2)^2}{9n} \sum_{t=2,4,6} \Omega_t \left| \left\langle aJ \right| U^{(t)} \right| \left| bJ' \right\rangle \right|^2$$
(2)

Where *n* is the refractive index of the host, *h* is the Planck constant, 2J+1 is the degeneracy of the ground state. $|\langle aJ || U(t) || bJ' \rangle|^2$ represents the reduced matrix elements that are insensitive to the local environment, and those values for Nd³⁺ ions given by *Carnall et al* were used in the calculations^[3,4]. The values of three Judd-Ofelt parameters $\Omega_{t}_{(2, 4, 6)}$ were provided by a least-squares fitting of f_{exp} to f_{cal} . According to the Judd-Ofelt formulae described, measured oscillator strengths (f_{exp}), calculated

oscillator strengths (f_{cal}) and Judd-Ofelt parameters Ω_t of K₅NdLi₂F₁₀ nanocrystals

were determined (Listed in Table S1).

Table S1. Observed absorption peak positions, integrated absorption coefficient, measured oscillator strengths (f_{exp}), calculated oscillator strengths (f_{cal}) and Judd-Ofelt parameters of the K₅NdLi₂F₁₀ nanocrystal dispersion ^a.

Electronic transition	Absorption peak	Absorption coefficient	Oscillator strength	Oscillator strength
(from ⁴ l _{9/2})	(nm)	∫α(λ)dλ(10 ⁻⁷)	$f_{exp}(10^{-6} \text{ cm}^2)$	<i>f_{cal}</i> (10 ⁻⁶ cm ²)
${}^{4}G_{7/2} {+}^{4}G_{9/2} {+}^{2}K_{13/2}$	521	14.20691	4.55085	4.45444
${}^{4}G_{5/2} + {}^{2}G_{7/2}$	576	19.46721	5.10968	6.70554
⁴ F _{7/2} + ⁴ S _{3/2}	743	23.68136	3.73563	4.27054
⁴ F _{5/2} + ⁴ H _{9/2}	800	24.98455	3.39959	5.33955
⁴ F _{3/2}	866	17.88561	2.07492	2.56509
Ω_2 (×10 ⁻²⁰ cm ²)		1	1.153	
$\Omega_4 \; (\times 10^{-20} \; cm^2)$	6.174			
Ω_{6} (×10 ⁻²⁰ cm ²)		2	2.997	

^a Based on absorption data from K₅NdLi₂F₁₀.

From the Judd–Ofelt parameters Ω_t obtained above, the radiative transition rates for electronic dipole transitions between an excited state and the lower lying levels can be calculated by the following Equation S3 ⁵:

$$A(aJ, bJ') = \frac{64\pi^4 e^2 n^2 \chi}{3h\lambda^3 (2J+1)} \sum_{t=2,4,6} \Omega_t \left| \left\langle 4f^N aJ \right| U^{(t)} \left| 4f^N bJ' \right\rangle \right|^2$$
(3)

The radiative lifetime of the ${}^{4}F_{3/2}$ state is related to the radiative decay rate through following Equation S4 ⁶:

$$\tau_{r}(a) = \frac{1}{A_{ed}(a)} = \frac{1}{\sum_{b} A_{ed}(ab)}$$
(4)

The quantum efficiency (ϕ) of the emission bands can be evaluated from the

following Equation S5⁷:

$$\varphi = \frac{\tau_{mea}}{\tau_{rad}} \tag{5}$$

The emission spectra of K_5 NdLi₂F₁₀ nanocrystals in PEG-400 shows three emission bands centered at 865, 1048, and 1332 nm. The fluorescence branching ratios of these bands, radiative transition probability (A_{rad}) between the excited states, and radiative lifetime of an emitting state were presented in Table S2.

Table S2. Observed emission bands, their measured and calculated radiative properties of $K_5 NdLi_2 F_{10}\,^a$

5 2 10				
Transition from ⁴ F _{3/2}	Wavelength (nm)	$A_{rad}(s^{-1})$	$\beta_{exp}(\%)$	τ _{cal} (μs)
⁴ _{13/2}	1332	1223.58	5.91774	441.274
⁴ _{11/2}	1048	908.478	40.0888	
4 _{9/2}	865	134.106	53.9935	

^a Based on emission data from K₅NdLi₂F₁₀ nanocrystals dispersion in PEG400.

In this work, a lifetime of 174.6 μ s was measured for the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition of K₅NdLi₂F₁₀ nanocrystals dispersion in PEG-400 that was confirmed by the radiative lifetime and the fluorescence branching ratios of ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition. According to the function (5), the emission quantum yield is deduced to be as high as 39.57 %.

References

- 1. H. Lin, E. Y. B. Pun and S. Q. Man, J. Opt. Soc. Am. B, 2000, 18, 602.
- 2. S. T. Tanabe, T. Ohyagi and N. Soga, Phys. Rev. B, 1992, 46, 3305.
- 3. W. T. Carnall, P. R. Fields and B. G. Wybourne, J. Chem. Phys., 1968, 42, 3797.

- 4. W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4412.
- X. X. Cui, J. B. Lu, C. Gao, C. Q. Hou, W. Wei and B. Peng, *Appl. Phys. A*, 2011, **103**, 27.
- 6. G. A. Kumar, A. Martinez and E. D. L. Rosa, J. Lumin., 2002, 99, 141.
- G. A. Kumar, C. W. Chen and R. E. Riman, J. Nanosci. Nanotechnol., 2008, 8, 6558.