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1. Relation between differential reflection and exciton density

    Figure S1 shows schematically the sample structure, which is composed of layers of 
MoSe2, SiO2, and Si, with thicknesses of  and complex indices of refraction of di

, as labeled in the figure. The thickness of Si layer is treated as infinity since 
it is much longer than the absorption depth of the probe in Si. The reflection amplitude at 
each interface is obtained by Snell’s Law, as shown on the right side of the figure. 
Adding all the reflected fields, we obtain the reflection coefficient,

    
(1)R 

r1 exp[i(1 2 )] r2 exp[i(1 2 )] r3 exp[i(1 2 )] r1r2r3 exp[i(1 2 )]
exp[i(1 2 )] r1r2 exp[i(1 2 )] r1r3 exp[i(1 2 )] r2r3 exp[i(1 2 )]

2

,

where the phase shift in each layer is .1(2)  2d1(2)n1(2) / 

Figure S1: Schematics showing the multilayer reflection of the probe beam, and the corresponding 
parameters determining the reflection coefficient

    We use Eq. (1) to calculate the linear reflection coefficient of the probe, R0. The 
excitons injected by the pump pulse in MoSe2 layer will change , and therefore the R. 
Generally speaking, the excitons change both the real and the imaginary parts of . 
However, since in the measurements the probe is tuned to the exciton absorption line, we 
expect the change in absorption, i.e. the imaginary part, contributes more. 
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    We numerically exam the relation between the differential reflection and differential 
absorption by using Eq. (1). For a given value of differential absorption, we calculate the 
corresponding R, and then obtain the differential reflection. The result is plotted in Fig. 
S2. Clearly, for small magnitudes of differential absorption (< 0.1), the relation is 
approximately linear. In our actual measurements, the magnitude of the differential 
reflection signal is about 10-4, which indicates a differential absorption of the same order. 
Hence, it is safe to conclude that the differential reflection measured is proportional to the 
differential absorption. We also confirmed, using the same procedure, that the differential 
reflection is proportional to the change in the index of refraction, so long as the 
differential reflection signal is small (< 0.1)

Figure S2: Differential reflection as a function of differential absorption calculated by using Eq. (1)

    Under the condition that the injected exciton density is much smaller than the 
saturation density, the differential absorption is proportional to the exciton density. Since 
in our measurements the change in absorption coefficient is a small fraction of the linear 
absorption coefficient (10-4), we know that the injected exciton density is much smaller 
than the saturation density. Therefore, we establish the linear relation between the 
differential reflection and the exciton density.

2. Drift-diffusion model and exciton density profiles

    The spatiotemporal dynamics of the excitons injected by the tightly focused pump 
pulse is described by the classical diffusion equation,

. N(r,t)
t

 D2N (r,t) N (r,t)


2



 With the initial condition of 

,N(r,t  0)  N0e


r2

 0
2

Its solution is 

.N(r,t)   0
2N0

 0
2  4Dt

e


t
 e


r2

 0
24 Dt

Hence, the spatial profile of the exciton density remains the Gaussian shape, with a width 
that increases with time. 

    The above equation is used to fit the measured spatial profiles. Figure S3 shows a few 
examples. Clearly, the fits are satisfactory at all the probe delays. No deviation from the 
expected Gaussian shape is observed.

Figure S3: Exciton density profiles measured at several probe delays (as labeled in each panel) and 
the corresponding Gaussian fits (solid red lines)
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    Due to the finite size of the probe spot, the measured density profiles are convolutions 
of the actual density profiles and the probe intensity profile, which is also a Gaussian 
function,

 I p (r)  I0e


r2

 p
2

.

The convolution of the two Gaussian functions remains Gaussian shape. The width of the 
measured profile at a certain probe delay is related to the actual profile width by 

. Hence, the effect of the finite probe spot is simply to add a  measured
2 (t)  actual

2 (t) p
2

constant to both sides of the broadening equation, . It does not change the slope,  p
2

which is used to determine the diffusion coefficient.

    When the centers of the pump and probe spots overlap (defined as x = 0), the decay of 
N is caused by both the exciton recombination and the diffusion of excitons out of the 
probe spot. By performing a convolution between the exciton density profile and the 
probe intensity profile, we find that the evolution of the measured N at x = 0 is

 N(x  0)  A
 p

2  0
2  4Dt

e


t
 ,

where A is a constant. When analyzing the data, we first use the broadening of the profile 
to determined the D, and then fit the measured N(x = 0) with the above equation to 
determine the exciton lifetime, with the known D.
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