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To test the effectiveness of this method, we presented the optimized structure of 

bulk MoO3 based on PBE and PBE-D2 approaches, respectively (shown in Figure S1). 

The PBE yields the two interlayer O-O distances between adjacent layers of 3.335 and 

2.855 Å, whereas PBE-D2 predicts the corresponding O-O distances of 3.212 and 

2.792 Å, which are more comparable with the experimental values of 3.240 and 2.823 

Å. [Kihlborg, L. Ark. Kemi 1963, 21, 357] The intralayer Mo-O bond lengths within a 

corrugated plane obtained using PBE and PBE-D2 are similar. Thus PBE-D2 is 

quantitatively better than PBE when dealing with the weak-bonded layer system. 

 

 

Table S1. The plane-wave cut off energy test results based on bulk MoO3, the k-point 

mesh was choosen as 8 × 6 × 8.  

Cut off (eV) 
Spin-nonpolarized 

energy (eV) 

Spin polarized 

energy (eV) 
Magnetization (µB) 

360 -132.031 -132.031 0.0003 

400 -132.864 -132.864 0.0003 

450 -132.617 -132.617 0.0003 

500 -132.647 -132.647 0.0000 

550 -132.640 -132.640 0.0000 

600 -132.661 -132.661 0.0000 

 

From Table 1, we see that the spin polarized magnetic moment are invariable with 

different energy cut off, and the energy difference between 500 eV and higher cut-off is 

less than 0.1 eV, so we choose the cut-off (500 eV) as our computation parameter. 
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Figure S1. The optimized geometry of bulk MoO3 based on PBE and PBE-D2, and the 

band structure from PBE-D2 calculation. The labeled bond length of d1 and d2 are the 

O-O distances between two adjacent layers, d3 is the Mo-O distance in the same layer 

along b-axis. The cyan and red atoms represent Mo and O atoms, respectively. The 

experimental data were taken from [Kihlborg, L. Ark. Kemi 1963, 21, 357]. The bands 

are plotted along a path connecting high-symmetry points in the irreducible Brillouin 

zone. The Fermi energy is denoted by a dashed line. The direct band gap is 2.75 eV at 

gamma point, better than the reported PBE result (2.23 eV),[Sayede, A. D.; Amriou, T.; 

Pernisek, M.; Khelifa, B.; Mathieu, C. Chem. Phys. 2005, 316, 72] but slightly lower 

than the experimental measurement (3.3 eV). [Bouzidi, A.; Benramdane, N.; 

Tabet-Derranz, H.; Mathieu, C.; Khelifa, B.; Desfeux, R. Mater. Sci. Eng. B 2003, 97, 

5] 
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Figure S2. Top and side view of the fully hydrogenated MoO3 monolayer as well as its 

band structure and projected density of state with spin-up channel.  

 

 

Figure S3. Top and side view of the spatial spin density distribution (a), band structure 

(b), partial density of states (c) for the second type of 12-c-II MoO3 monolayer 

nanoribbon, and band structure of 12-c-II MoO3 monolayer nanoribbon with edge 

hydrogenated (d).  
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Figure S4. Spatial spin density distribution of a-11 (a), c-11-I (b) and c-11-II (c) 

nanoribbons where both surface and edge atoms are saturated by H atoms, as well as the 

corresponding band structures (d), (e) and (f).  

 

 

Figure S5. Optimized a-12 (a), two types of c-12 (b, d) and c-11-I and c-11-II 

combined (c) MoO3 double-layer nanoribbons, as well as their corresponding band 

structures.  
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Figure S6. Top (left) and side (right) views of 2D single layer MoO3 geometries 

(2×1×2 supercell) with c-axis condensed by 5% (a) and 10% (e), stretched by 5% (c) 

and 10% (g), respectively; with a-axis condensed by 5% (b) and 10% (f), stretched by 

5% (d) and 10% (h), respectively. 

 

 

Figure S7. Band structures of MoO3 monolayer with a-axis (upper panel) and c-axis 

(lower panel) condensed and stretched by 5% and 10%, respectively.  
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Figure S8. Top (left) and side (right) views of 1D single-layer MoO3 a-12 nanoribbon 

condensed by 5% (a) and 10% (e), stretched by 5% (c) and 10% (g) along a-axis, 

respectively; c-12 NR condensed by 5% (b) and 10% (f), stretched by 5% (d) and 10% 

(h) along c-axis, respectively.  
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Figure S9. Band structures of a-12 (upper panel) and c-12 (lower panel) MoO3 

single-layer nanoribbons with c-axis and a-axis condensed and stretched by 5% and 

10%, respectively.  
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