Supplementary Information

TiO₂ Shell Layer on Highly Conducting Indium Tin Oxide Nanowire for Photovoltaic Devices

Hyun Soo Han,^{*a*} Ju Seong Kim,^{*a*} Dong Hoe Kim,^{*a*} Gil Sang Han,^{*b*} Hyun Suk Jung,^{*b*} Jun Hong Noh,^{**c*} and Kug Sun Hong^{**a*}

 ^a WCU Hybrid Materials Program, Department of Materials Science & Engineering, Seoul National University, Seoul 151-742, Korea.
^b School of Advanced Materials Science and Engineering, Sung Kyun Kwan University, Suwon 440-746, Korea.
^c Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea.

Corresponding author; E-mail: jhnoh@krict.re.kr (Jun Hong Noh), kshongss@plaza.snu.ac.kr (Kug Sun Hong)

Fig. S1 Raman spectrum of the as-prepared TiO₂ shell layer.

Fig. S2 Tauc plot of the TiO_2 shell layer for optical band gap.

The sizes of TiO_2 NCs with various annealing temperatures are obtained by following Scherrer equation,

$$t = \frac{0.9\lambda}{B\cos\theta_B} \qquad (eq. S1)$$

where t is the size of crystallite, λ is the wavelength of incident X-rays, *B* is the line broadening at half the maximum intensity (FWHM) in radians and θ_B is the center angle of the peak.

	λ(nm)	B (rad)	$\theta_{\rm B}$	Size (nm)
150 °C	0.1540	0.028	12.65	5.0
350 °C	0.1540	0.019	12.65	7.3
500 °C	0.1540	0.012	12.65	11.4
600 °C	0.1540	0.009	12.65	15.9

Table. S1 Parameters for Scherrer equation and calculated particle size of TiO_2 shell layers with different annealing temperatures

An electrochemical workstation (Zennium, Zahner) with an attached frequency response analyzer and a light-emitting diode (667 nm) was utilized for the intensity-modulated photovoltage spectroscopy (IMVS) study.

Fig. S3 The electron recombination (IMVS) time constant as a function of the open-circuit voltage for ITO-TiO₂ coreshell nanowire array DSSCs with annealing temperatures of 350 $^{\circ}$ C and 500 $^{\circ}$ C

Fig. S4 The electron recombination (IMVS) time constant as a function of the open-circuit voltage for ITO-TiO₂ core-shell nanowire array DSSCs TiO₂ single shell layer and double shell layer.