
Confinement effects and why carbon nanotubes bundles can work as
gas sensors†
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In this supporting material we provide detailed information on the energetics and final arrangement of the different adsorption
sites considered in this study. This is done to justify the configurations shown in figure 1c-d of the main manuscript.
Furthermore we also present a more detailed overview of the Molecular Dynamics simulation and transport calculations per-
formed on different snapshots in order to justify our results for the disordered case.

1 Supporting Information

In this supporting material we provide detailed information on
the energetics and final arrangement of the different adsorp-
tion sites considered in this study. This is done to justify the
configurations shown in figure 1c-d of the main manuscript.

Furthermore we also present a more detailed overview of
the Molecular Dynamics simulation and transport calculations
performed on different snapshots in order to justify our results
for the disordered case.

1.1 Energetics and stability of adsorbed molecules on iso-
lated CNTs

The question of stability in SWCNT was investigated in detail
for two molecules, namely CO and NH3. For a complete un-
derstanding of the adsorption process we studied three possi-
ble positions of the molecules on the carbon nanotube hexago-
nal matrix. In figure S1 we show schematically three position
labeled by I, II and III corresponding to top (T), hollow (H)
and bridge (B) sites on the tube, respectively. Furthermore,
for CO molecules three possible orientations (as we can see in
the figure S1(a-c)) were considered. We shall call them CO
(a), OC (b) and axial (c) orientation.For the NH3 molecules,
two orientations were considered; the nitrogen atom is point-
ing either away (e) or towards (d) the nanotube as we can be
seen in the figure S1(d-e). All calculations were performed
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Fig. S1 Schematic positions of the molecular gas (CO and NH3)
considered adsorved in the SWCNT. Was considered three different
places and three (two) orientations for CO (NH3).

using ab initio density functional theory1,2 as described in the
main text.∗

The energy differences using as a reference the most sta-
ble configuration of each molecule are shown in the table S1.
For carbon monoxide the IIb configuration is the most stable
structure and the one considered in the manuscript. For am-
monia the most stable stucture is the IId as can seen in the
table S1. We note that the energy difference between the dif-
ferent positions/orientations lies in the range 0.03− 0.06 eV
for the perpendicular configurations in CO whereas it is much
higher for the axial orientation of the molecule (∼ 0.2 eV). For
ammonia they vary between 0.03 eV and 0.06 eV.

∗The electronic structure calculations are based on density functional theory as
implemented in the SIESTA package 3 with the inclusion of a parametrized
disperson-corrected atom-centered potential (DCACP) 4,5 which accounts for
van der Waals (vdW) interactions. In our DFT simulations we used the Gen-
eralized Gradient Approximation (GGA) within the Perdue-Burke-Ernzerhof
(PBE) proposal 6 to treat the exchange-correlation potential, a double-ζ po-
larized basis set (DZP) and standard norm-conserving pseudopotentials 7.
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Table S1 Relative energies (given in eV) of relaxed SWCNT with
adsorbed CO and NH3 molecules in different configurations. The
structural indexing follows Figure S1.

CO a b c NH3 d e
I 0.031 0.055 - I 0.027 -
II 0.028 0.000 0.192 II 0.000 0.055
III - - 0.214 III 0.034 -

In the table S2 we show the distances between the
molecules and the isolated SWCNT. We note that in all cases
studied the distance between the molecules and the nanotube
is in the same range. From these results we can infer that the
main type of interaction between molecule and nanotube is of
the van der Waals type, and no chemical bond is formed.

Table S2 Distances given in Å of relaxed SWCNT with adsorbed
molecular gas CO and NH3.

CO a b c NH3 d e
I 2.95 3.32 - I 3.23 -
II 3.168 3.26 3.13 II 3.37 3.14
III - - 3.12 III 3.30 -

1.2 Electronic Transport Properties in Bundles

For our transport calculations we use the non-equilibrium
Green’s function formalism8–11. Within this framework we
initially divide a one-dimensional system into three different
parts following the procedure first put forward by Caroli et
al.12. These three parts consist of two semi-infinite charge
reservoirs to the left and to the right of a central scattering re-
gion. In the specific case of this work we are interested in the
electronic transport properties of either isolated nanotubes or
CNTs in bundles containing molecules adsorbed on the tube
walls. Figure 1a, c and d of the manuscript depict the central
scattering region used in our calculations. In all cases the elec-
trodes are made up of a semi-infinite repetition of a unit cell of
the pristine system (denoted here as the principal layer (PL))
to either the left or the right of the scattering region.

The main quantity that characterizes our system is then the
Green’s function for the scattering region which can be written
down as

GS (E,V ) = [E ×SS −HS [ρ]−ΣL (E,V )−ΣR (E,V )]−1 ,
(1)

where SS and HS are finite operators for the overlap and the
Hamiltonian of the central scattering region whereas ΣL/R are

the so called self-energies which account for the effect of the
electrodes onto the central region. These will be described in
detail in section 1.3. Here we assume that the Hamiltonian is
a functional of the charge density ρ and depends indirectly on
the external bias V .

From the knowledge of the Green’s function and the cou-
pling of the scattering region to the charge reservoirs it is pos-
sible to calculate the transmission coefficients

T (E) = ΓL (E,V )GS (E,V )ΓR (E,V )G†
S (E,V ) (2)

where the coupling matrices are given by

Γα = i
[
Σα −Σ†

α
]

(3)

with α ≡ {L,R}. Subsequently the current can be calculated

I (V ) =
e2

h

∫
dE T (E,V ) [ f (E,µL)− f (E,µR)] , (4)

where the chemical potentials µL/R for the left and right elec-
trodes are given by

µL = EF +
V
2

(5)

µR = EF − V
2
. (6)

Finally, in the linear regime, the differential conductance is
given by

g = lim
V→0

dI
dV

. (7)

In principle, the theory described above could be used
to calculate the electronic transport properties of any one-
dimensional device provided the Hamiltonian HS is know. As
it was mentioned in the manuscript this Hamiltonian is cho-
sen to be the Kohn-Sham Hamiltonian coming from density
functional theory1,2. The combination DFT+NEGF has been
successfully applied to a variety of problems in nanoscale sys-
tems9,10,13,14.

Fig. S2 Schematic representation of a system consisting of m
building blocks. Each segment is described by a Hamiltonian Hi and
by the coupling Vi j =Vi jδi j±1 between building blocks.

Nonetheless, the system we are dealing with here entails
two additional difficulties. The first is the fact that the device
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is, in principle, a disordered three-dimensional system (in the
case of the bundle). In order to circumvent this problem we
enlarge the unit cell in the transverse direction while includ-
ing periodic boundary conditions. This way one increases the
possible arrangements of sites in the case of low concentra-
tion of molecules. With the enlarged cell (shown in Figure 1a
of the manuscript) we perform our calculations -in the single
molecule case - with 720 carbon atoms (plus one molecule ad-
sorbed onto the tube walls on either of the eight binding sites).
This turns our three dimensional problem into a wide one-
dimensional one, where the electronic transport occurs along
the tube’s axial direction.

Secondly, for a description of a large number os molecules
randomly distributed along the bundle one must consider a
system with tens of thousands of atoms (in our case approx-
imately 50,000) using an atomistic description. We solve
this problem using the recursive Green’s fuction method15–20

whereby we use the short-range interaction between different
degrees of freedom (all orbitals within each atom) to our ad-
vantage . In figure S2 we present a schematic representation
of a general one-dimensional device. It was divided into dif-
ferent segments each of which is denoted by a Hamiltonian

Hi and the coupling between adjacent segments Vi j.† We note
here that the on-site Hamiltonians Hi are not necessarily the
same for every i. They can be, for instance, pristine regions or
segments containing molecules in different relative positions.

Therefore the Hamiltonian for the scattering region can be
written in block-tridiagonal form, i. e.,

HS =



H1 V1,2 0 0 0 · · · 0
V2,1 H2 V2,3 · · · 0 · · · 0

0 V3,2
. . . Vj−1, j 0 · · · 0

...
... Vj, j−1 H j Vj, j+1 · · ·

...

0 0 0 Vj+1, j
. . . . . . 0

...
...

...
...

. . . Hm−1 Vm−1,m
0 0 0 0 0 Vm,m−1 Hm


.

(8)
In the case of a non-orthogonal basis set the Overlap matrix
can be written in analogous form.

This way equation 1 for the specific problem of a long one-
dimensional system is simply



H̄1 −ΣL V̄1,2 0 0 0 · · · 0
V̄2,1 H̄2 V̄2,3 · · · 0 · · · 0

0 V̄3,2
. . . V̄j−1, j 0 · · · 0

...
... V̄j, j−1 H̄ j V̄j, j+1 · · ·

...

0 0 0 V̄j+1, j
. . . . . . 0

...
...

...
...

. . . H̄m−1 V̄m−1,m
0 0 0 0 0 V̄m,m−1 H̄m −ΣR


G = I . (9)

For simplicity we have introduced the bar operators in such
a way that the on-site and the off-site matrix elements are

H̄i = [ESi −Hi] (10)
and (11)
V̄i, j = [ESi, j −Hi, j] , (12)

respectively.
While the Hamiltonian HS is clearly block-tridiagonal the

same cannot be said about the Green’s function which is gen-
erally a dense matrix,

† For non-adjacent segments the coupling is considered to be zero. The seg-
ments can be chosen in such a way that this condition is always satisfied.
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G =



G1 G1,2 G1,3 · · · G1, j · · · G1,m−1 G1,m
G2,1 G2 G2,3 · · · G2, j · · · G2,m−1 G2,m

G3,1 G3,2 G3
. . .

... G3, j+1 · · · G3,m
...

...
. . . . . . G j−1, j G j−1, j+1

...
...

G j,1 G j,2 · · · G j, j−1 G j G j, j+1 · · · G j,m
...

... G j+1,3 G j+1, j−1 G j+1, j
. . . . . .

...

Gm−1,1 Gm−1,2 Gm−1,3 · · ·
...

. . . Gm−1 Gm−1,m

Gm,1 Gm,2 Gm,3 · · · Gm, j · · · Gm,m−1 Gm


. (13)

However, if one looks at the coupling matrices ΓL and ΓR,
it can be noted that the only terms that differ from zero are the
first and last diagonal blocks for the left and right electrodes

ΓL =



i
[
ΣL −Σ†

L

]
0 0 0 0 · · · 0

0 0 0 · · · · · · · · · 0

0 0
. . . 0 0 · · · 0

...
... 0 0 0 · · ·

...

0 0 0 0
. . . . . . 0

...
...

...
...

. . . 0 0
0 0 0 0 0 0 0


, (14)

and

ΓR =



0 0 0 0 0 · · · 0
0 0 0 · · · 0 · · · 0

0 0
. . . 0 0 · · · 0

...
... 0 0 0 · · ·

...

0 0 0 0
. . . . . . 0

...
...

...
...

. . . 0 0

0 0 0 0 0 0 i
[
ΣR −Σ†

R

]


. (15)

Consequently, with a little algebra it is possible to show that
the total transmission (equation 2) can be reduced to

T (E) = Tr
[
ΓLG1mΓRG †

1m

]
. (16)

In other words, of all the elements of the Green’s function, the
only ones that are of real interest for the electronic transport
properties are the ones that effectively couple the left electrode
(segment of index 1) to the right electrode (segment of index
m) - the two extremes of the scattering region.

Thus, ideally, one would only need to calculate the block
G1,m of the Green’s function to calculate the full electronic

transport properties of the system. The way to solve this prob-
lem is to recursively remove the degrees of freedom in the
central scattering region17,19–21. Due to the tridiagonal nature
of the total Hamiltonian, we can perform a procedure known
as decimation22 which in many aspects is similar to Gaussian
elimination.

Fig. S3 Schematic representation of the decimation procedure for a
Hamiltonian consisting of m building blocks written in tridiagonal
form.

A schematic representation of this procedure is shown in
figure S3. One can see that after each renormalization step the
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building blocks immediately to the right and to the left and
the coupling are the only terms that differ while all the other
elements are left unchanged. Furthermore, we perform the
decimation procedure for the next step using the result of the
previous one.

We start off with the original Green’s function equation for
the full system

H̄1 −ΣL V̄1,2 0 · · · 0 · · · 0 0

V̄2,1 H̄2 V̄2,3 · · · 0 · · · 0 0

0 V̄3,2 H̄3

. . .
.
.
. 0 · · · 0

.

.

.

.

.

.
. . .

. . . V̄ j−1, j 0

.

.

.

.

.

.
0 0 · · · V̄ j, j−1 H̄ j V̄ j, j+1 · · · 0

.

.

.

.

.

. 0 0 V̄ j+1, j

. . .
. . .

.

.

.

0 0 0 · · ·
.
.
.

. . . H̄m−1 V̄m−1,m

0 0 0 · · · 0 · · · V̄m,m−1 H̄m −ΣR


×



G1 G1,2 G1,3 · · · G1, j · · · G1,m−1 G1,m

G2,1 G2 G2,3 · · · G2, j · · · G2,m−1 G2,m

G3,1 G3,2 G3

. . .
.
.
. G3, j · · · G3,m

.

.

.

.

.

.
. . .

. . . G j−1, j G j−1, j+1

.

.

.

.

.

.
G j,1 G j,2 · · · G j, j−1 G j G j, j+1 · · · G j,m

.

.

.

.

.

. G j+1,3 G j+1, j−1 G j+1, j

. . .
. . .

.

.

.

Gm−1,1 Gm−1,2 Gm−1,3 · · ·
.
.
.

. . . Gm−1 Gm−1,m

Gm,1 Gm,2 Gm,3 · · · Gm, j · · · Gm,m−1 Gm



=



I 0 0 · · · 0 · · · 0 0

0 I 0 · · · 0 · · · 0 0

0 0 I
. . .

.

.

. 0 · · · 0

.

.

.

.

.

.
. . .

. . . 0 0

.

.

.

.

.

.
0 0 · · · 0 I 0 · · · 0

.

.

.

.

.

. 0 0 0
. . .

. . .
.
.
.

0 0 0 · · ·
.
.
.

. . . I 0

0 0 0 · · · 0 · · · 0 I


.

(17)

The terms in blue denote segments along the diagonal and
terms in red correspond to the coupling of that building block
with the rest of the device. After the first decimation step (su-

perscript index equal to 1) the terms V1,2 and H2 are removed
resulting in the effective Hamiltonian with matrix elements

H̄1
1 = H̄1 −V̄1,2 [H̄2]

−1 V̄2,1 , (18)

H̄1
3 = H̄3 −V̄3,2 [H̄2]

−1 V̄2,3 , (19)

V̄ 1
1,3 = 0−V̄1,2 [H̄2]

−1 V̄2,3 . (20)

All the remaining terms are left unchanged. This way equation
17 is reduced to

H̄1
1 −ΣL V̄ 1

1,3 · · · 0 · · · 0 0

V̄ 1
3,1 H̄1

3

. . .
.
.
. 0 · · · 0

.

.

.
. . .

. . . V̄ j−1, j 0

.

.

.

.

.

.
0 · · · V̄ j, j−1 H̄ j V̄ j, j+1 · · · 0

.

.

. 0 0 V̄ j+1, j

. . .
. . .

.

.

.

0 0 · · ·
.
.
.

. . . H̄m−1 V̄m−1,m
0 0 · · · 0 · · · V̄m,m−1 H̄m −ΣR


×



G1 G1,3 · · · G1, j · · · G1,m−1 G1,m

G3,1 G3

. . .
.
.
. G3, j · · · G3,m

.

.

.
. . .

. . . G j−1, j G j−1, j+1

.

.

.

.

.

.
G j,1 · · · G j, j−1 G j G j, j+1 · · · G j,m

.

.

. G j+1,3 G j+1, j−1 G j+1, j

. . .
. . .

.

.

.

Gm−1,1 Gm−1,3 · · ·
.
.
.

. . . Gm−1 Gm−1,m

Gm,1 Gm,3 · · · Gm, j · · · Gm,m−1 Gm



=



I 0 · · · 0 · · · 0 0

0 I
. . .

.

.

. 0 · · · 0

0
. . .

. . . 0 0

.

.

.

.

.

.
0 · · · 0 I 0 · · · 0

.

.

. 0 0 0
. . .

. . .
.
.
.

0 0 · · ·
.
.
.

. . . I 0

0 0 · · · 0 · · · 0 I


. (21)

The procedure can be repeated m− 2 times until the right
electrode is reached. At the (m−3)-th step the reduced
Green’s function has the following reduced shape

(
H̄(m−3)

1 −ΣL V̄ (m−3)
1,m−1 0

V̄ (m−3)
1,m−1 H̄(m−3)

m−1 V̄m−1,m
0 V̄m,m−1 H̄m −ΣR

)
×
(

G1 G1,m−1 G1,m
Gm−1,1 Gm−1 Gm−1,m
Gm,1 Gm,m−1 Gm

)
=
(

I 0 0
0 I 0
0 0 I

)
, (22)

and finally after the last step one reaches(
Heff

1,1 −ΣL Heff
1,m

Heff
m,1 Heff

m,m −ΣR

)(
G1,1 G1,m
Gm,1 Gm,m

)
=

(
I 0
0 I

)
.

(23)

Thus, one has obtained a Green’s function equation for the
two renormalized electrodes coupled via an effective scatter-
ing potential. This effective Hamiltonian satisfies the same
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Green’s function equation for our initial device.‡ Each term in
this effective Hamiltonian is give by

Heff
1,1 = H̄m−2

1 = H̄1 −
m−2

∑
i=1

V̄ i−1
1,i+1

[
H̄ i−1

i+1
]−1

V̄ i−1
i+1,1 (24)

Heff
m,m = H̄m−2

m = H̄m −V̄ 0
m,m−1

[
H̄m−3

m−1
]−1

V̄ 0
m−1,m (25)

Heff
1,m = V̄ m−2

1,m = −V̄ m−3
1,m−1

[
Hm−3

m−1
]−1

V̄ 0
m−1,m (26)

Finally, to simplify our problem we asssume that the cou-
pling between to different segments is always equal to the cou-
pling of the pristine GNRB, in other words,

V̄i,i+1

N M−N

= M′−N

N

[
0 0

V̄0 0

]
, (27)

where N is the dimension of the defect-free system with cou-
pling between principal layers equal to V̄0, and M and M′ are
the dimensions of the two adjacent building blocks.

After performing this procedure we are able to calculate the
transmission coefficents using equation 16 and subsequently
the differential conductance g.

Our calculations were performed on nanotubes approxi-
mately 180 nm in length containing more than 50,000 atoms.
As mentioned previously this is accomplished by randomly as-
sembling segments of nanotube bundles (either with or with-
out molecules). Each segment was obtained by a separate
DFT calculation. Considering the disordered nature of the
system we performed, for each concentration of molecules,
no less than 50 realizations, i. e., considering a fixed number
of molecules adsorbed onto the tubes we randomly select the
arrangement of building blocks and calculate the conductance.
This procedure was then repeated at least 50 times and an av-
erage was calculated. The results are shown in figure 4 of the
manuscript.

1.3 Leads self-energies

The Green’s function for the entire open system is given by ESL −HL ESLS−HLS 0
ESSL −HSL E SS −HS ESSR−HSR

0 ESRS −HRS ESR −HR

G = I ,

(28)
with

G =

 GL GRS GLR
GLS GS GSR
GRL GRS GR

 , (29)

‡ A similar procedure can in fact be used in a dense system. In that case, how-
ever, all coupling terms must be taken into consideration and thus there is no
computational gain in this procedure and it becomes identical to a Gaussian
elimination procedure.

where we have partitioned the Green’s functions G into the
infinite blocks describing the left- and right-hand side leads
GL and GR, those describing the interaction between the leads
and scattering region GLS, GRS, the direct scattering between
the leads GLR, and the finite block describing the extended
molecule GS. We have also introduced the matrices HL, HR,
HLS, HRS and their corresponding overlap matrix blocks, in-
dicating respectively the left- and right-hand-side leads Hamil-
tonian and the coupling matrix between the leads and the scat-
tering region; HS is an N ×N matrix.

Here we consider that our electrodes are formed by a peri-
odic structure described by an ”on-site” Hamiltonian H0 and
a coupling H1 between adjacent cells. The infinite matrices,
HL and HR describe the leads and have the following block-
diagonal form

HL =


. . . . . . . . . . . .

...
0 H−1 H0 H1 0
. . . 0 H−1 H0 H1
. . . . . . 0 H−1 H0

 , (30)

with similar expressions for HR and the overlap S matrix
counterparts. In contrast the coupling matrices between the
leads and the extended molecule are infinite-dimensional ma-
trices whose elements are all zero except for a rectangular
block coupling the last unit cell of the leads and the scatter-
ing region. For example we have

HLS =

 ...
0

HLS

 . (31)

The crucial step in solving equation (28) is to write down
the corresponding equation for the Green’s function involving
the scattering region and the last unit cell (the surface) of the
left and right leads and then evaluate the retarded Green func-
tion for the scattering region GS. This can be done by assum-
ing that the potential drop occurs entirely across the extended
molecule and there are no changes to the electronic structure
of the charge reservoirs arising from neither the coupling to
the molecule nor through the external bias. Bearing that in
mind we can focus solely on the scattering region and treat the
effect of electrodes in terms of an effective interaction.

This can be achieved by eliminating the degrees of freedom
of the electrodes one by one from deep into the leads all the
way to the interface with the scatterer. Effectively, one can
renormalise the total Hamiltonian using a procedure that can
be shown to be exact22. The final expression for GS has the
form already presented in equation 1, where the self-energies
are given by

ΣR
L(E) = (ε+SSL −HSL)g0R

L (E) (ε+SLS −HLS) (32)
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and

ΣR
R(E) = (ε+SSR −HSR)g0R

R (E) (ε+SRS −HRS) . (33)

Here g0R
L and g0R

R are the retarded surface Green function
of the leads, i.e. the leads retarded Green functions evalu-
ated at the unit cell neighbouring the extended molecule when
this one is decoupled from the leads. Formally g0R

L (g0R
R ) cor-

responds to the right lower (left higher) block of the retarded
Green’s function for the whole left-hand side (right-hand side)
semi-infinite lead. These are simply

G 0R
L (E) = [ε+SL −HL]

−1 (34)

and
G 0R

R (E) = [ε+SR −HR]
−1 . (35)

Note that G 0R
L (G 0R

R ) is not the same as G R
L (G R

R ) defined in
equation (29). In fact the former are the Green functions for
the semi-infinite leads in isolation, while the latter are the
same quantities for the leads attached to the scattering region.
Importantly one does not need to solve equations (34) and (35)
for calculating the leads surface Green functions and a closed
form avoiding the inversion of infinite matrices can be pro-
vided22. From equations (32) and (33) it is clear that the prob-
lem is reduced to that of computing the retarded surface Green
functions for the left- (g0R

L ) and right-hand side (g0R
R ) lead re-

spectively. This does not require any self-consistent procedure
since the Hamiltonian is known and it is equal to that of the
bulk leads plus a rigid shift of the on-site energies. However
the calculation should be repeated several times since the Σ’s
are energy dependent. Therefore it is crucial to have a stable
algorithm.

There are a number of techniques in the literature to cal-
culate the surface Green functions of a semi-infinite system.
These range from recursive methods8? to semi-analytical con-
structions22. The latter method gives us a prescription for
calculating the retarded surface Green function exactly con-
sidering only the knowledge of the Hamiltonian (and overlap
matrix) of an infinite periodic system and by considerign ap-
propriate boundary conditions for the Green’s function.

. The main idea is to construct the Green function for an
infinite system as a summation of Bloch states with both real
and imaginary wave-vectors, and then to apply the appropriate
boundary conditions to obtain the Green function for a semi-
infinite lead.

As shown in equation 30 the Hamiltonian and the overlap
matrices are arranged in a tridiagonal block form, having re-
spectively H0 and S0 on the diagonal, and H1 and S1 as the
first off-diagonal blocks (see figure S4)). Since we are dealing
with an infinite periodic quasi-one-dimensional system, the
Schrödinger equation can be solved for Bloch states

ψz = n1/2
k eikzϕk (36)

Fig. S4 Infinite periodic system used as current/voltage probe and
schematic diagram of the Hamiltonian. H0 and S0 are the matrices
describing the Hamiltonian and the overlap within a unit cell, while
H1 and S1 are the same quantities calculated between two adjacent
unit cells. The arrow indicates the direction of transport (here along
the z axis).

and reads [
K0 +K1eik +K−1e−ik

]
ϕk = 0 , (37)

where z = a0 j with j integer and a0 the separation between
principal layers, k is the wave-vector along the direction of
transport (in units of π/a0), ϕk is a N-dimensional column
vector and nk a normalisation factor. Here we introduce the
N ×N matrices

K0 = H0 −ES0 , (38)
K1 = H1 −ES1 , (39)

K−1 = H−1 −ES−1 . (40)

Since the Green’s functions are constructed at a given en-
ergy our task is to compute k(E) (both real and complex) in-
stead of E(k) as conventionally done in band theory. A numer-
ically efficient method to solve the “inverse” secular equation
k = k(E) is to map it onto an equivalent eigenvalue problem.
It is simple to demonstrate22 that the eigenvalues of the fol-
lowing 2N ×2N non-Hermitian matrix

M =

(
−K1

−1K0 −K1
−1K−1

IN 0

)
(41)

for a given energy E are eik(E) and that the upper N compo-
nents of the eigenvectors are the vectors ϕk.

Finally, the knowledge of k and {ϕk} is sufficient to con-
struct the retarded Green function for the doubly-infinite sys-
tem, which has the form22

Gzz′ =

{
∑N

l ϕkl e
ikl(z−z′)ϕ̃ †

kl
V−1 z ≥ z′

∑N
l ϕk̄l

eik̄l(z−z′)ϕ̃ †
k̄l

V−1 z ≤ z′
, (42)

where the summation runs over both real and imaginary kl .
In equation (42) kl (k̄l) are chosen to be the right-moving or
right-decaying (left-moving or left-decaying) Bloch states, i.e.
those with either positive group velocity or having k-vector
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with positive imaginary part (negative group velocity or nega-
tive imaginary part). {ϕkl} are the corresponding vectors, and
V is defined in reference22 . Finally {ϕ̃kl} is just the dual of
{ϕkl} obtained from

ϕ̃ †
kl

ϕkm = δlm (43)

ϕ̃ †
k̄l

ϕk̄m
= δlm (44)

(45)

In the case of a non-orthogonal basis set the same expres-
sion is still valid if V is now defined as follows

V =
N

∑
l

(
H†

1 −ES†
1

)[
ϕkl e

−ikl ϕ †
kl
−ϕk̄l

e−ik̄l ϕ †
k̄l

]
. (46)

Finally the surface Green functions for a semi-infinite sys-
tem can be obtained from those of the doubly-infinite one by
an appropriate choice of boundary conditions. For instance if
we subtract the term

∆z
(
z′− z0

)
=

N

∑
l,h

ϕk̄h
eik̄h(z−z0)ϕ †

k̄h
ϕkl e

ikl(z0−z′)ϕ †
kl

V−1 , (47)

from Gzz′ of equation (42) we obtain a new retarded Green
function vanishing at z = z0. Note that ∆z (z′− z0) is a lin-
ear combination of eigenvectors (wavefunctions) and there-
fore does not alter the causality of G.

In this way we obtain the final expression for the retarded
surface Green functions of both the left- and right-hand side
lead

g0
L =

[
IN −∑

l,h
ϕk̄h

e−ik̄h ϕ †
k̄h

ϕkl e
ikl ϕ †

kl

]
V−1, (48)

g0
R =

[
IN −∑

l,h
ϕkh eikh ϕ †

kh
ϕk̄l

e−ik̄l ϕ †
k̄l

]
V−1. (49)

Once these operators have been calculated it is easy to obtain
the self-energies from equations 32 and 33. These need to be
computed at the beginning of the calculation only for a given
energy mesh.

1.4 Molecular Dynamics and transport in CNT bundles:
single molecule case

We performed a Quantum Molecular Dynamics (QMD) sim-
ulation implemented in SIESTA code using the NVT canoni-
cal ensable with Nose-Hoover thermostat23,24. One thousand
steps were considered to reach thermal equilibrium and after
ten thousands steps of molecular dynamics were performed
(5 ps with 0.5 fs time step). The temperature used this sim-
ulation was 300 K. The main question addressed here is how

the temperature can affect the postion of the molecule, and
futhermore, whether these variations in position can alter the
transport properties. Firstly we observed that, in both cases,
the molecules flow freely along the tube, but not along of the
tranverse direction.

Figure S5 shows four different snapshots of our molec-
ular dynamics simulation. As one can see, the molecule
freely rotates inside the channel formed between the nan-
otubes in the bundle. From each of these configurations
we performed NEGF+DFT calculations8–11 to determine the
electronic transport properties. The results are presented in
figure S5(a-d) for carbon monoxide and figure S5(e-h) for am-
monia.

From the graphs it is possible conclude that, although there
are significant changes in molecular orientation the transmit-
tance, in all cases shown, are not altered. In essence, this justi-
fies the assumptions made in the main text where we use only
one configuration for our calculations of the disordered sys-
tem.
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10 A. R. Rocha, V. M. Garcı́a-Suárez, S. Bailey, C. Lambert, J. Ferrer and

S. Sanvito, Phys. Rev. B, 2006, 73, 085414.
11 F. D. Novais, A. J. R. da Silva and A. Fazzio, Brazilian Journal of Physics,

2006, 36, 799.
12 C. Caroli, R. Combescot, P. Nozieres and D. Saint-James, J. Phys. C,

1971, 4, 916.
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Fig. S5 Transmittance in fuction of the energy for four QMD configurations in both molecular gas cases. The QMD snapshot was showed in
detail for each gas where we can see the gas evolution in time. For a to d we show the transmittance of CO gas and from e to h we show the
NH3.
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