Supporting information for

Facile Synthesis of Loaf-like ZnMn₂O₄ Nanorods and Their Excellent Performance on Li-ion Batteries

Zhongchao Bai,^{a*} Na Fan,^b Changhui Sun,^b Zhicheng Ju,^b Chunli Guo,^a Jian Yang,^{c*} Yitai Qian^{bc}

a Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, 030024, China. Tel.: +86 351 6010540. E-mail: <u>baizhongchao@tyut.edu.cn</u>

b Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China

c School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China Email: <u>yangjian@sdu.edu.cn</u>

Figure S1 Nitrogen adsorption-desorption isotherms (a) and pore-size-distribution curves (b) of the loaf-like $ZnMn_2O_4$ nanorods.

Figure S2 The XRD pattern of ZnMn₂O₄ synthesized at 600 °C.

Figure S3 (a) TEM image of $ZnMn_2O_4$ prepared at 800 °C for 2 h and (b) SEM image of $ZnMn_2O_4$ obtained at 700 °C for 10 h.