Electronic supplementary information

Rutile-type (Ti,Sn)O₂ nanorods as efficient anode materials toward its lithium storage capabilities

Yu-Chun Chen,^a Tai-Feng Hung,^b Chih-Wei Hu,^c Ching-Yu Chiang,^d Chun-Wei Huang,^a Hui-Chia Su,^d Ru-Shi Liu,^{*b} Chih-Hao Lee^c and Chia-Chin Chang^{*a}

^a Department of Greenergy, National University of Tainan, Tainan 701, Taiwan.

^b Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

^c Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan

^d National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

^{*}Author to whom correspondence should be addressed.

Tel: +886- 6-260-0295. Fax: +886- 6-260-2205. E-mail: ccchang@mail.nutn.edu.tw (Prof. Chia-Chin Chang)

Tel: +886-2-3366-1169. Fax: +886-2-2363-6359. E-mail: rsliu@ntu.edu.tw (Prof. Ru-Shi Liu)

Fig. S1 (a) Ti 2p and (b) Sn 3d XPS core level spectra of $(Ti,Sn)O_2$ solid solutions obtained at various calcination temperatures.

Fig. S2 (a) Ti and (b) Sn *K*-edge XANES spectra of (Ti,Sn)O₂ solid solutions obtained at various calcination temperatures.

Fig. S3 TEM images of $(a \cdot d)$ ST-450, $(b \cdot e)$ ST-500 and $(c \cdot f)$ ST-600. The scale bar in the upper image is 100 nm and in the lower is 20 nm.

Fig. S4 Cyclic voltammograms of (a) ST-450, (b) ST-500 and (c) ST-600 recorded by a scan rate of 1.0 mV s⁻¹ between 0.1 V and 3.0 V in 1 M LiPF₆ EC/DEC (1:1 w/w) solution.

Fig. S5 DSC thermograms of lithiated electrodes obtained in N_2 atmosphere with the heating rate of 10 °C min⁻¹.

Sample	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	Volume / $Å^3$
Sn/TiO ₂	4.6199	4.6199	2.9577	63.127
ST-450	4.6129	4.6129	2.9753	63.311
ST-500	4.6126	4.6126	2.9758	63.315
ST-600	4.6124	4.6124	2.9774	63.342

Table S1 Lattice constants of a unit cell for Sn/TiO₂ and (Ti,Sn)O₂ solid solutions refined by GSAS with Rietveld method

		ST-450	ST-500	ST-600
		Atomic %	Atomic %	Atomic %
Ι	Ti	93.0	89.0	90.0
	Sn	7.0	11.0	10.0
Π	Ti	84.8	89.2	89.5
	Sn	15.2	10.8	10.5

Table S2 Atomic ratio in various regions of each (Ti,Sn)O₂ solid solution estimated by energy-dispersive X-ray (EDX) spectroscopy analysis

Sample	Ti ppm	Sn ppm	Ti Atomic %	Sn Atomic %	Chemical formula
ST-450	40.49	16.92	86	14	$(Ti_{0.86}Sn_{0.14})O_2$
ST-500	46.6	19.37	86	14	$(Ti_{0.86}Sn_{0.14})O_2$
ST-600	40.98	16.68	86	14	$(Ti_{0.86}Sn_{0.14})O_2$

Table S3 Atomic ratio of each (Ti,Sn)O₂ solid solution determined by ICP-AES analysis