Supplementary Information for

Electroactive Nanoparticle Directed Assembly of Functionalized Graphene Nanosheets into Hierarchical Structures with Hybrid Compositions for Flexible Pseudocapacitors

5

Bong Gill Choi,^a Yun Suk Huh,^b Won Hi Hong,^{*a} David Erickson,^{*c} and Ho Seok Park^{*d}

^a Department of Chem. & Biomolecular Eng. (BK 21), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, E-mail: whhong@kaist.ac.kr

10^b Division of Material Science, Korea Basic Science Institute, Daejeon, 305-333, Republic of Korea

- ^c School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- ^d Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin-si 446-701, Republic of Korea, E-mail: phs0727@khu.ac.kr

15

Samples	Pore size (nm)	Surface area $(m^2 g^{-1})$	Pore volume (cm ^{3} g ^{-1})
CMGN	5.82	9.56	0.04
CMGN/RuO ₂	4.98	179.56	0.11
CMGNR	3.83	494.05	0.49

Fig. S1 TGA curves of CMGN and CMGNR hybrids.

Figure S2. N₂ adsorption/desorption isotherms and pore size distribution of CMGNR.

Fig. S3 (a) XPS survey spectra and (b) S 2p XPS spectra of CMGN and CMGNR hybrids.

The formation of RuO₂ on CMGN was confirmed by XPS results. When compared to the bare CMGN 5 sample, the CMGNR composites exhibited new Ru 4p, Ru 4s, Ru 3d, and Ru 3p peaks, thereby indicating the formation of RuO₂ on the composites. In addition, the S 2p peak of CMGN was observed at 170.2 eV, which is assigned to the sulfur in the –SO₃H groups from the Nafion. In contrast, CMGNR showed the shifted peak of S 2p at 171.7 due to the mutual interactions between the –SO₃H groups and RuO₂.

10

Fig. S4 Cyclic voltammograms of (a) CMGN-SC and (b) CMG-SC at the bent and relaxed states with scan rate of 100 mV/s.

Fig. S5 Cyclic voltammograms of CMGNR-SC at the bent and relaxed states with scan rate of 100 mV/s.

Fig. S6 Durability test of CMGN/RuO₂-SC with galvanostatic charge–discharge at a constant current 1 A/g.

5

Fig. S7 Impedance spectrum of CMGNR-SC and CMGN/RuO₂-SC.