Supplementary Information

Metallofullerenol Gd@C₈₂(OH)₂₂ Distracts Proline-Rich-Motif from Putative Binding on SH3 domain

Seung-gu Kang¹, Tien Huynh¹ and Ruhong Zhou^{1,2,*}

¹Computational Biology Center, IBM Thomas J. Watson Research Center Yorktown Heights NY, 10598 USA ²Department of Chemistry, Columbia University, New York, NY 10027 USA

*Corresponding author: <u>ruhongz@us.ibm.com</u>

Figure S1. Contribution of hydrogen bonding and hydrophobic packing (denoted by contact surface area) of $Gd@C_{82}(OH)_{22}$ in its binding to SH3 domain. The number of hydrogen bonds between $Gd@C_{82}(OH)_{22}$ and SH3 domain is found to be roughly proportional to their contact surface area during this binding process. Our analysis also shows that $Gd@C_{82}(OH)_{22}$ can form up to 10 hydrogen bonds with SH3 domain, along with ~260 Å² contact surface area. This indicates both the specific hydrogen bonding and non-specific hydrophobic packing contribute to the $Gd@C_{82}(OH)_{22}$'s binding with SH3 domain.

Figure S2. Time evolution of native contacts (ratios against X-ray structure) between PRM and SH3 domain. While native contacts are frequently observed between SH3 and PRM with no $Gd@C_{82}(OH)_{22}$ in presence (panel **a**), the addition of $Gd@C_{82}(OH)_{22}$ nanoparticles is shown to seriously interfere PRM's interaction with SH3 with no obvious native contacts seen (panel **b**). In the absence of $Gd@C_{82}(OH)_{22}$, we found 2 trajectories out of total 7 showing that PRM is bound almost perfectly at the native binding site of SH3 domain.