Electronic supplementary information (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013

# Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis<sup>†</sup>

Diptiman Choudhury,<sup>a,e,§</sup> Paulrajpillai Lourdu Xavier,<sup>c,§</sup> Kamalesh Chaudhari,<sup>d</sup> Robin John,<sup>c</sup> Anjan

Kumar Dasgupta,<sup>b</sup> Thalappil Pradeep<sup>c\*</sup> and Gopal Chakrabarti<sup>a\*</sup>

<sup>a</sup>Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India 700019. \*Email: gcbcg@caluniv.in <sup>b</sup>Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India 700019. <sup>c</sup>Department of Chemistry and DST Unit of Nanoscience, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India 600036. \*Email: pradeep@iitm.ac.in <sup>d</sup>Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India 600036.

<sup>e</sup>Currently at Department of Medicine, Division of Uro-Oncology, Cedars Sinai Medical Centre, 8700-Bevarly Blvd, Los Angeles, California 90048, USA.

<sup>§</sup>these authors contributed equally to this work



**Fig. S1** Extinction spectra of three different sized (20 nm, 40 nm and 60 nm) citrate capped AuNPs with corresponding TEM images, namely AuNP<sub>20</sub>, AuNP<sub>40</sub> and AuNP<sub>60</sub>. Scale bar for all TEM images is 50 nm.

# **Electronic Supplementary Information 1A: Calculation of molarity of AuNP**

Molarity of AuNPs in solution was calculated using the following formula,

 $M_{NP} = \frac{(Molarity of Au^{3+} in the solution) \times (Volume of one gold atom)}{(Volume of one nanoparticle)}$ 

$$M_{NP} = \frac{6MA_r}{\pi D^3 \rho N_A}$$

$$= (6 * 250 * 197 * 7) / (22 * (40 * 10^{-7})^3 * 19.3 * 6.023 * 10^{23})$$

= 2068500 / ( 22 \* 64000 \*  $10^{-21}$  \* 19.3 \* 6.023 \*  $10^{23}$  )

$$= 2068500 / (22 * 64 * 19.3 * 6.023 * 10^{5})$$

 $= 2068500 / (163671.4112 * 10^5)$ 

= 12.64  $*10^{-5}$  µM = 126.4 pM which gives molarity of AuNP<sub>40</sub> in the stock solution as 126.4 pM.

Where,

M = Molarity of Au<sup>3+</sup> stock in  $\mu$ M

 $A_r$  = Atomic weight of Au in g

D =Diameter of nanoparticle in cm

 $\rho$  = Density of gold in g/cm<sup>3</sup>

$$N_A$$
 = Avogadro number

For AuNP<sub>40</sub> molarity of stock solution was found to be, 126.4 pM.

The extents of polymerization inhibition were around  $28.6 \pm 2.7\%$ ,  $40.32 \pm 1.7\%$  and  $60.47 \pm 3.5\%$  in presence of AuNP<sub>40</sub> at 5, 12.5 and 25 pM, respectively (for 30 minutes). Hence the calculated IC<sub>50</sub> value (i.e. 50% inhibitory concentration) for AuNP<sub>40</sub> was  $18.6 \pm 0.9$  pM.



**Fig. S2** Plot showing the calculation of  $IC_{50}$  concentration of  $AuNP_{40}$  for purified mammalian tubulin polymerization. Error in the determination of % polymerization is given in supporting information 1. From the above plot (**Fig. S2**) we can infer that at the  $IC_{50}$  dose of  $AuNP_{40}$  for polymerization inhibition of tubulin (12 µM) is ~18.6 pM and the molar ratio of  $AuNP_{40}$ : tubulin is around 1 : 3.16 X 10<sup>5</sup>.







**Fig. S4** FTIR spectra of microtubule and tubulin (solid black line in A and B) and AuNP<sub>40</sub> treated tubulin and microtubule (red solid line in A and B).





Fig. S5 PL spectra showing the quenching of intrinsic fluorescence of tryptophan upon interaction

with AuNP<sub>40.</sub>



Fig. S7 Thiol estimation with control and tubulin incubated with  $AuNP_{40}$  at different concentrations. Results indicated 3-5% loss of cysteine content per heterodimer.



**Fig. S7** A) UV-vis spectroscopic study of effect of  $Au_{NPs}$  on the polymerized tubulin. After 25 minutes of polymerization, upon addition  $Au_{NPs}$  did not depolymerise the polymerized microtubules *in vitro*, as observed from the spectra (highlighted spectral region with dotted ellipse; the original spectra were subtracted with the corresponding scattering spectra of  $Au_{NPs}$  for clarity). B) Bardiagram showing the percentage of retention of polymerized tubulins with various concentrations of  $Au_{NP}$ .



**Fig. S8**. Cell viability assay results of A549 cells upon 72 h AuNP<sub>40</sub> treatment. The calculated  $IC_{50}$  value was 29.5±1.7 pM.



**Fig. S9A.** Dark field microscopic (DFM) images of AuNP<sub>40</sub>. Left side: images a, b and c are DFM images of AuNP<sub>40</sub> and d is the large area image from which a, b and c were selected. Right side (e): the corresponding Plasmon Resonance Raleigh Scattering (PRRS) spectra of nanoparticles: a (blue solid line representing AuNP in the image a), b (black solid line representing AuNP in the image b), and c (red solid line representing AuNP in the image c). These particles are labelled in images a, b and c.



**Fig. S9B.** AuNPs in the aggregated tubulin matrix. Left: images a, b and c are selected area from Figure 2D. a is part of tubulin aggregate without nanoparticle, b and c are nanoparticles in the aggregated protein matrix. Right (d): the corresponding scattering spectra of a, b and c. a (solid cyan line) is the scattering spectra of protein aggregate in the image a and is broad and low in intensity. b (solid magenta line) and c (green solid line) are scattering spectra (sharp and high in intensity) of nanoparticles in the aggregated protein matrix in the image b and c, respectively. The difference between b and c in the scattering peak position may be due to the surrounding environment. The particles from which spectra are collected are labelled.



**Fig. S8C** Scattering from vesicles were observed in the control untreated cells. Left: Images a, b, c and d are four selected area images from the topmost image of Figure 6C. Right (e): Corresponding scattering spectra of vesicles in a, b, c and d. Here the spectra are broad and lesser in intensity unlike those of plasmonic nanoparticles which is a key factor to distinguish nanoparticles from vesicles. The vesicles from which spectra are collected are marked.



**Fig. S9D.** Scattering images and spectra of particles uptaken by AuNP<sub>40</sub> treated cells. Left Side: Images a, b, c and d are selected area images from the middle image of Figure 6C, showing the presence of scattering from AuNPs. Right (e): Corresponding scattering spectra of AuNPs in the right side images a (solid blue line representing AuNPs in image a), b (solid red line representing AuNPs in image b), c (solid green line representing AuNPs in image c) and d (solid magenta line representing AuNPs in image d), respectively. The particles from which spectra are collected are marked.



**Fig. S10** Positive control: Vinblastin (500 nM) treated A549 cells for 24 hours showing microtubule damage. Upper panel images show control cells (non-treated). Lower panel images show vinblastin treated cells. Nucleus is stained with DAPI (blue) and microtubule is stained with anti-tubulin antibody conjugated with TRITC (red). Scale bar is 10  $\mu$ m.



Fig. S11 A) Bar diagram showing % of cell viability for the three different sized AuNPs at different concentrations at 24 h. B) Bar diagram showing % of cell viability for the three different sized AuNPs at different concentrations at 48 h



Fig. S12 Cell viability assay of MCF-7 after 72 h treatment with  $AuNP_{40}$ . The calculated IC<sub>50</sub> value was 46.4±1.9 pM.



**Fig. S13** Observation of a similar effect of AuNPs interacting with MCF-7 cells. The cells were stained with TRITC against anti- $\alpha$ -tubulin antibody. (A) Control MF7 cells, not treated with AuNPs. (B) Treated with 12.5 pM AuNP<sub>40</sub>, (C) treated with 25.0 pM AuNP<sub>40</sub> and (D) treated with 50.0 pM AuNP<sub>40</sub>. Cellular microtubule structure was monitored after 72 h of incubation.

Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013