

Electronic Supplementary Information

Hierarchical Heterostructures of MnO₂ Nanosheets or Nanorods Grown on Au-Coated Co₃O₄ Porous Nanowalls for High Performance Pseudocapacitance

Wenyao Li[‡], Gao Li[‡], Jianqing Sun, Rujia Zou, Kaibing Xu, Yangang Sun, Zhigang

Chen, Jianmao Yang, and Junqing Hu*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620,
China

E-mail: hu.junqing@dhu.edu.cn

[‡] These authors contributed equally to the work.

Fig. S1 Low-magnification SEM image showing as-grown Co_3O_4 porous nanowalls on macroporous Ni foam.

Fig. S2 XRD patterns demonstrate a transformation of $\text{Co}(\text{OH})_2$ to Co_3O_4 after thermal annealing at 250 °C. The up pattern matches well with that of hexagonal $\alpha\text{-Co}(\text{OH})_2$ phase by referring to JCPDS card (no.: 74-1057),¹ while the bottom pattern can be indexed to that of cubic Co_3O_4 phase by referring to JCPDS card (no.: 43-1003).² Here, a broad weak peak (centered at $2\theta = \sim 25^\circ$) of both patterns is due to glass substrate during the XRD measurements.

Fig. S3 High-magnification SEM image of dense and fine MnO₂ nanosheets grown on the Au-coated Co₃O₄ porous nanowalls, appearing like a kind of coral (an upper-left inset).

Fig. S4 HRTEM image shows that as-grown MnO₂ nanosheet is as thin as ~ 2-3 nm.

Fig. S5 High-magnification SEM image of as-grown MnO_2 nanorods on the Au-coated Co_3O_4 nanowall arrays.

Fig. S6 XPS spectrum acquired from the $\text{Co}_3\text{O}_4@\text{Au}@\text{MnO}_2(\text{NRs})$ hierarchical heterostructures.

Fig. S7 CV curves recorded from the Ni foam and as-grown Co₃O₄ porous nanowalls, respectively, at a scan rate of 50 mV s⁻¹.

Fig. S8 Galvanostatic charge-discharge curves of the Co₃O₄@Au@MnO₂(NSSs) hierarchical heterostructures at different current densities.

Specific capacitance calculation

The specific capacitance of the electrode was calculated from the C-V curves

according to the following equation:³

$$C = \frac{Q}{\Delta V * m}$$

where C (F g⁻¹) is the specific capacitance, m (g) is the mass of the active materials in the electrodes, Q (C) is an average charge during the charging and discharging processes, and ΔV (V) is the potential window.

The discharge specific capacitance is calculated from the discharge curves using the following formula:³

$$C = \frac{I * \Delta t}{m * \Delta V}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials, and the potential windows, respectively.

The power density and energy density are calculated from the following equations, respectively:³

$$E = \frac{1}{2} C * \Delta V^2$$

$$P = \frac{E}{t}$$

where P (kW kg⁻¹), C (F g⁻¹), ΔV (V), t (s), and E (W h kg⁻¹) are the power density, specific capacitance, potential window of discharge, discharge time, and energy density, respectively.

Reference

- 1 T. Zhao, H. Jiang, J. Ma, *J. Power Sources* 2011, **196**, 860.
- 2 C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, X. G. Zhang, X. W. Lou, *Energy Environ. Sci.* 2012, **5**, 7883.
- 3 J. Yan, E. Khoo, A. Sumboja, P. S. Lee, *ACS Nano* 2010, **4**, 4247.