Electronic Supplementary Information:

Carrier concentration-dependent electron transfer in Cu₂O/ZnO nanorod arrays and their photocatalytic performance

Tengfei Jiang, Tengfeng Xie*, Liping Chen, Zewen Fu and Dejun Wang*

Fig. S1 SEM images of Cu₂O (pH10.0)/ZnO (a) and Cu₂O (pH9.0)/ZnO nanorod arrays (b).

Fig. S2 The XRD patterns of Cu_2O films prepared at different pH values. The diffraction peaks of FTO substrate are marked with asterisks.

The XRD patterns of Cu_2O films prepared at different pH values were measured as shown in Fig. S2. All the diffraction peaks can be identified as the cubic phase Cu_2O (JCPDS 78-2076). No diffraction peaks of other crystalline phase could be found according to the XRD patterns, which means that the pH values do not affect the crystalline phase of Cu_2O in our experiment.

Fig. S3 The concentrations of MV^{+} formation over different Cu₂O/ZnO nanorod arrays under visible light ($\lambda > 400 \text{ nm}$) irradiation.

Fig. S4 Mott-Schottky plots of the Cu₂O prepared at different pH values in the dark.

Fig. S5 (a) Modulation frequency dependent SPV of Cu_2O/ZnO nanorod arrays at 532 nm. The light intensity is 10 mW/cm². (b) Light intensity denpendent SPV of Cu_2O/ZnO nanorod arrays at 532 nm. The modulation frequency is 77 Hz.