Supporting information for

In-situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

Peng Li^{a,b}, Yichen Zong^c, Yingying Zhang^{b,*}, Mengmeng Yang^c, Rufan Zhang^a,

Shuiqing Li^c, Fei Wei^{a,b,*}

a Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,

Tsinghua University, Beijing, 100084, China

b Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China

c Key laboratory for Thermal Science and Power Engineering of Ministry of

Education, Tsinghua University, Beijing, 100084, PR China

* Email: <u>yingingzhang@tsinghua.edu.cn</u>

wf-dce@tsinghua.edu.cn

Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013

Figure S1: The schematic of the synthesis process of CNT/quartz fiber filter.

Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013

Figure S2: Typical size distribution of atomized polydisperse NaCl aerosols used for

air filtration test.

Figure S3: Images of a quartz fiber filter (left) and a CNT/quartz fiber filter (right).

Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2013

Figure S4: SEM image of a CNT/quartz fiber filter after 5 minutes of sonication in

ethanol.

1. Calculation of porosity: porosity is calculated as following

Porosity =
$$\frac{\rho_{quartz\ fiber} - \rho_{quartz\ fiber\ filter}}{\rho_{quartz\ fiber\ -} - \rho_{air}} (1)$$

 ρ stands for the density of materials, and the ρ of quartz fiber, CVD growth CNTs and air is 2.2 g/cm³, 2^[1] g/cm³ and 1.2 × 10⁻³ g/cm³ respectively. Therefore, the porosity of quartz fiber filter can be calculated to be 89.1%. To calculate the porosity of CNT/quartz fiber filter, the $\rho_{quartz fiber}$ and $\rho_{quartz fiber filter}$ in formula (1) can be replaced by $\rho_{quartz fiber-CNTs}$ and $\rho_{CNT/quartz fiber filter}$ respectively. Based on TGA results, the $\rho_{quartz fiber-CNTs}$ can be calculated as following: $\rho_{quartz fiber-CNTs} = 2.2 \times 0.87 + 2 \times 0.13 = 2.17$ (2)

Thus, the porosity of CNT/quartz fiber filter can be calculated to be 89.4%.

2. Calculation of filter specific area: filter specific area is calculated as following

Filter specific area = BET surface area \times Density

Reference

[1] Zhang Q, Huang J Q, Zhao M Q, et al. Carbon Nanotube Mass Production: Principles and Processes. ChemSusChem, 2011,4(7):864-889.